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  CHAPTER -1 

CIRCUIT ELEMENTS& ENERGY SOURCES 

INTRODUCTION: 
 

An electric circuit is an interconnection of electrical elements such as 
resistors, capacitors, inductors, voltage source etc. In electrical engineering, transfer of 
energy takes place from one point to another, which requires interconnection of 
electrical devices. Such interconnection is known as electric circuit and each component 
of the circuit is known as an element. 

 
EXAMPLE # Consider an electrical circuit as shown in 
the figure. This electric circuit consists of four elements 
a battery, a lamp, switch & connecting wires. Circuit and 
network theorem is the study of the behaviour of the 
circuit: Its behaviour tells us how does it respond to a 
given input how do the interconnected elements and 
devices in the circuit interact? 

 

ELECTRIC CURRENT: 
Electric current may be defined as the time rate of net motion of an 

electric charge across a cross sectional boundary as shown in the figure given below. A 
random motion of electrons in a metal does not constitute a current unless there is a net 
transfer of charge with time i.e. electric current. 

 
i = Rate of transfer of electric charge 

= Quantity of electric charge transferred during a given time 
duration/ Time duration 

= 
𝑑Q 

𝑑𝑡 

 

Coulomb is the practical as well as SI unit for measurement of electric 
charge. Since current is the rate of flow of electric charge through conductor and 
coulomb is the unit of electric charge, the current may be specified in coulombs per 
second. In practice the ampere is used as the unit of current. Coulomb is the practical as 
well as SI unit for measurement of electric charge. Since current is the rate of flow of 
electric charge through conductor and coulomb is the unit of electric charge, the current 
may be specified in coulombs per second. In practice the ampere is used as the unit of 
current.
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VOLTAGE: 
 

The voltage is the potential difference between two points of a 

conductor carrying a current of one ampere when the power dissipated between these 

two points is equal to one watt. The practical unit of voltage is volt. 
 

 

POWER:  
Power is defined as the rate of doing work or rate at which it can perform 

work. So Power = work done/ Time in seconds 

P = 
𝑑w

= 
𝑑w 𝑑𝑞

= v i
 

𝑑𝑡 𝑑𝑞 𝑑𝑡 

Absolute unit of power is watt. One watt is that power which is required to perform one 
joule of work in one second. The practical unit of power is horse power (HP). This value 
in metric system is 75kg meters per second and in British system is 550 Foot 
Pounds/second. Therefore 

1 HP (Metric) = 75 Kg meters per second= 735.5 watt 
1 HP (British) = 550 Foot Pound/ second = 746 watt 

 

ENERGY: 
Energy of a body is its capacity of doing work. 

𝐸 = ∫
𝑡 

𝑃𝑑𝑡 

The unit of energy in MKS system is joule and in SI system is KWH. A 
system can have this energy in various forms, such as electrical, mechanical, heat, 
chemical, atomic energy etc. Energy of one form can be transformed to other form, but 
cannot be created nor be destroyed. If one form of energy disappeared, it reappears in 
another form. This principle is known as law of conservation of energy. 

 

CIRCUIT ELEMENTS/PARAMETERS: 

1. RESISTANCE: 
Resistance restricts the flow of electric current through the material. Unit 

of Resistance(R) is Ohm. From Ohm’s law 
R=V/I 

When an electric current flows through any conductor, heat is generated due to collision 
of free electrons with atoms. If I amp is the strength of current for potential difference V 
volts across a conductor, the power observed by resistor is : 

P=VI= (IR).I=𝐼2𝑅 watts 
Energy lost in the resistor in form of heat is then 

𝑡 𝑡  2 
2 𝑉2 

 E=∫0 
𝑝. 𝑑𝑡=∫0 

𝐼 

2. INDUCTANCE: 

𝑅 𝑑𝑡=𝐼 𝑅t= 
𝑅 

x t 

It opposes any change of magnitude or direction of electric current 
passing through the conductor. Unit is Henry (H).When a current will flow through the 
coils/Inductor an electromagnetic field is created. However in the event of any change 



  

of flow on direction of current, the electromagnetic field also changes. This change of 
field induces a voltage (V) across the coil & is given by 

𝑉 = 𝐿. 𝑑i 
𝑑𝑡 

Where ‘i’ is current through the inductor. 

------ (1) 

Voltage across an inductor is zero when current is constant. 
Hence an inductor acts like short circuit to dc. 

 
Power absorbed by inductor 

P=V x i=Li 𝑑i watts. ----------------------------------- (2) 
𝑑𝑡 

Energy absorbed. 
E=∫

𝑡 
𝑝. 𝑑𝑡 = 1 Li2 ------------------------------------------------------------------- (3) 

 

0 2 
 

From equation (2) & (3): The inductor can store finite amount of energy, 
even the voltage across it may be nil. A pure inductor does not dissipate energy but can 
only store it. 

 
3. CAPACITANCE: 

It is the property of capacitor, which have the capability to store electric 
charge in its electric field established by the two polarities of charges on the two 
electrodes of a capacitor. 

The amount of charge store by capacitor is 
q = cv 
i= 𝑑𝑞 =>i=c 𝑑𝑣 

𝑑𝑡 𝑑𝑡 

Therefore if voltage across capacitor is constant, current through it is 
zero. Hence capacitor acts like a open circuit to dc. 

Power absorbed P=V.I= VC𝑑𝑣 
𝑑𝑡 

Energy stored E=∫
𝑡 

𝑝. 𝑑𝑡 = 1 CV2 
 

0 2 

A capacitor can store finite amount of energy. Even if the current through it is zero. It 
never dissipates energy. 

 

TYPES OF ELEMENTS: 
ACTIVE AND PASSIVE ELEMENT: 

An active element has capability to generating energy while passive 
elements have not. 

Ex: Active Element: Generators, Batteries, And Amplifiers. 
Passive Element: Resistor, Inductor, capacitor. 

 
BILATERAL AND UNILATERAL ELEMENT: 

If the magnitude of current passing through the element is affected due to 
change in the polarity of the applied voltage, the element is called unilateral element. 
And if the current magnitude remains same, it is called as bilateral element. 

Ex: Unilateral Element: - Diodes, Transistors. 
Bilateral Element: - Resistor, Inductor, Capacitor 



  

LINEAR AND NON-LINEAR ELEMENTS: 
A linear element shows linear characteristics of voltage Vs current. 

Resistors, Inductor, Capacitor are linear elements and their property does not change in 
applied voltage on circuit current. 

For non-linear elements the current passing through it does not change 
linearly with the time as change in applied voltage at a particular frequency. 

Ex: Semiconductor devices. 
ENERGY SOURCES: 

Independent Energy sources: The voltage & current sources whose values or 
strength of voltage and current does not change by any variation in the connected 
network are called independent sources. 

 

 

Series connected independent 
sources: Consider the series connection of two 
voltage sources as shown in the figure. By KVL 
the total voltage between the terminals is equal 
to algebraic sum of individual sources i.e. the 
voltage sources connected in series may be 
replaced by a single voltage source whose 
voltage is equal to the algebraic sum of the 
individual sources. 

 

Dependent Energy sources: When the strength of voltage and current changes 
in the sources for any change in the connected network, they are called dependent 
sources. There four different types of dependent sources 

a) Voltage controlled voltage source (VCVS) 
b) Voltage controlled current source (VCCS) 
c) Current controlled voltage source (CCVS) 
d) Current controlled current source (CCCS) 

 



  

 
 
 

 

SOURCE TRANSFORMATION: 
The voltage and current sources are mutually transferable as shown in 

the figure below. 

  

KIRCHHOFF’S LAW: 
These laws are more comprehensive than Ohm’s law and are used for  

solving electrical networks which may not be readily solved by latter. Kirchhoff’s law is  
of two types, Kirchhoff’s current law and Kirchhoff’s voltage law. Kirchhoff’s current law 
is used when voltage is chosen as variable while Kirchhoff’ voltage law is used when 
current is chosen as variable. 

 
KCL: According to Kirchhoff’s current law the algebraic sum of currents at any 

node of a circuit is zero. From the figure given below: 
 

 

-I1-I2+I3-I4+I5=0 

=>I1+I2+ I4=I3+I5 

Hence: 
Algebraic sum of currents entering a node = 
Algebraic sum of current leaving a node. 

 
Example1: Find the magnitude and direction of the unknown current as shown 

in figure given I1= 10 A, I2= 6A, I5= 4A 
 
Solution: Assume direction of current in the 
network 

 
(i) I1= I7= 10 A 
(ii) I1= I2 + I4=> I4= I1- I2= 10- 6= 4 A 
(iii) At node b: I2 - I3 - I5= 0 

=> 6 - I3- 4=0 => I3= 2A 
(iv) At node d: I4 + I3 - I6= 0 

=>4 + 2 – I6 =0 
=> I6 = 6 A 



  

Assume direction of all current are correct because of their positive 
magnitude. Assume directions of unknown current are arbitrary and any direction can 
be taken. 

 
Example2: Find v and the 

magnitude and direction of the unknown 
currents in the branch xn, yn and zn as 
shown in figure. 

 
 
 

 

Solution:  
At node y: 10 + Ix + Iz = Iy + 2 
Ix – Iy + Iz= -8 
𝑉 + 𝑉 + 𝑉 = -8 [since Ix = 𝑉 , Iy=− 𝑉 , Iz= 𝑉 ] 
5 2 4 5 5 5 

𝑉 = −8.42 volt 
 

Negative magnitude shows that n to be positive. 

 
Therefore Ix = -8.42 = -1.684 A (i.e. from flowing current n to x) 

5 

Iy = - (−8.42)= 4.21 A (ie Current flowing from n to y) 
2 

Iz = −8.42= -2.1 A (ie current flowing from n to z) 
4 

 
 

The circuit can be redrawn as given below 

 
 
 
 
 
 

Example3: Find i1 and i2 as shown in figure 

Solution: The circuit is redrawn in figure 
According to KCL: i1 + i2 = 5 + 4 i2------------------ (1) 

i1- 3 i2 = 5 ------------------------ (2) 

 

Here i1 = 
𝑉 

; i2 = 
𝑉

 
1 5 

Therefore equation 2: V - 3𝑉 = 5 
5 

=> V = 12.5 volt 
Therefore i1 = 12.5 A and i2 = 2.5 A 



  

KIRCHHOFFS VOLTAGE LAW: 
This law can be stated as 
“The algebraic sum of voltage in any 

closed path of a network that is traversed in single 
direction is zero.” 

Explanation: According to KVL 
V1 – IR1 – V2 – IR2 – IR3 = 0 
IR1 + IR2 + IR3 = V1 – V2 

I= 
𝑉1−𝑉2 

𝑅1+𝑅2+𝑅3 

 

CURRENT DIVISION RULE: 
Two resistors are joined in parallel 

across a voltage V. The current in each branch, as given 
in ohm’s law is 

I1=V/R1 and I2= V/ R2 

 
Therefore I1/I2 = R2/ R1 = G1/ G2 

 
Hence the division of current in the 

branch of parallel circuit is directly proportional to the 
conductance of the branches or inversely proportional to their resistances. We may also 
express the branch currents in terms of the total circuit current thus: 

Now I1 + I2 = I 
=> I2 =I - I1 

Therefore  I1 
I−I1 

= 
𝑅2 

or I1 R1 = R2(I - I1 ) 
𝑅1 

Therefore I1 = I 
𝑅2

 
𝑅1+𝑅2 

and I2   =I 
𝑅1

 
𝑅1+𝑅2 

 

Thus current division rule is stated as 
“The current in any of the parallel branches is equal to the ratio of 

the opposite branch resistance to the total resistance, multiplied by the total current.” 
 
Example4: A resistance of 10 ohm is connected in series 
with two resistances each of 15 ohm arranged in parallel. 
What resistance must be shunted across this parallel 
combination so that the total current taken shall be 1.5 A 
with 20 volt applied? 
Solution: The circuit connected in figure 
Drop across 10 ohm resister = 1.5 * 10=15V 
Drop across parallel combination, VAB= 20-15=5V 
Hence voltage across each parallel resistance is 5V. 

I1= 5/15 = 1/3 A 
I2= 5/15= 1/3 A 
I3= 1.5-(1/3+1/3)= 5/6 A 

 
Therefore I3R = 5 or (5/6) R = 5 or R=6 ohm 



  

Example5: Calculate the value of different current for 
the circuit shown in given figure. 

 
Solution: Total current I = I1 + I2 + I3 

Let the equivalent resistance be R. 
Then V= I R 
Also V = I1 R1 

Therefore I R = I 1 R1 

Or I 1= I R/R1 ------------------------------------------------------------------ (1) 
Now (1/R) = (1/R1) + (1/R2) + (1/R3) 

 

R= 
𝑅1 𝑅2 𝑅3 

𝑅1 𝑅2 + 𝑅2 𝑅3+ 𝑅3 𝑅1 

 

From equation 1: I 1= 
𝑅2 𝑅3

 
𝑅1 𝑅2 + 𝑅2 𝑅3+ 𝑅3 𝑅1 

 

Similarly I 2 = 
𝑅1 𝑅3

 
𝑅1 𝑅2 + 𝑅2 𝑅3+ 𝑅3 𝑅1 

 

I 3 = 
𝑅1 𝑅2 

𝑅1 𝑅2 + 𝑅2 𝑅3+ 𝑅3 𝑅1 
 

VOLTAGE DIVISION RULE: 
A voltage divider circuit is a series network which is used to feed other 

networks with a number of different voltages and is derived from a single input voltage 
source. Figure shows a simple voltage divider circuit which provide two output voltages 
V1 and V2. Since no load is connected across the output terminals, it is called an 
unloaded voltage divider. We may also express the branch voltages in terms of the total 
circuit voltage thus: 

Now V1 + V2 = V 
=> V2 =V - V1 

 

 
Therefore  V1 

V−V1 
= 

𝑅1 
or V1 R2 = R1 (V – V1) 

𝑅2 
 

Therefore V1 = 𝑉 
𝑅1

 
𝑅1+𝑅2 

and V2 = V 𝑅2 
𝑅1+𝑅2 

 

Thus Voltage division rule is stated as 
“The voltage across a resistor in series circuit is equal to the value of that 

resistor times the total impressed voltage across the series elements divided by the 
total resistance of the series elements.” 

 
Example9: Find the value of different voltages that can be 
obtained from a 12 V battery with the help of voltage divider 
circuit of figure. 

Solution: 
R= R1 + R2 + R3 = 4 + 3+ 1 = 8 ohm 
Drop across R1=VR1 = 12 × (4/8) = 6 volt 
Drop across R2=VR2 = 12 × (3/8) = 4.5 volt 
Drop across R3=VR3 = 12 × (1/8) = 1.5 volt 



  

 

 

Example10: What are the output voltages of the unloaded voltage divider shown in 
figure what is the direction of current Through AB? 

 
Solution: 

It may be remember that both V1 and V2 are with 
respect to ground. 

R= 6+ 4 + 2 = 12 ohm 
Therefore 

V1= Drop across R2= 24 × (4/12) = 8 volt 
V2 = Drop across R3= -24 × (2/12) = -4 volt 

 
It should be noted that point B is negative potential with respect to the 

ground. Current flows from A to b i.e. from a point at a higher potential to appoint at a 
lower potential. 
Problem 1 

 



 

STAR DELTA TRANSFORMATIONS 
 

Figure shows a Y (star or wage) connected resistance circuit. Let 

the resister value of Y network are Ra, Rb and Rc. Figure shows a (delta) 

connected resistances and Let the resistor values are Rab , Rbc and Rca . 

    
                               
 

It is possible to substitute a star connected system of resistance for a delta 
system and vice-versa if proper values are given to the substituted 
resistances. 

 
DELTA TO STAR CONVERSION 

 
The two systems will be exactly equivalent if the resistance between any 
pair of terminals A, B and C in figure for the star is the same as that between 
the corresponding pair for the delta connection when the third terminal is 
isolated. 

 
 

For the Y-network resistance between the terminal 

 
A and B is Rab = Ra + Rb ---------------------------------------------- eq. (i) 

 
For the Δ network resistance between the terminals AB is 

Rab = Rab II (Rac + Rbc) 



 

= Rab(Rac+Rbc) --------------------------------------- eq. (ii) 

Rab+Rac+Rbc 

 
Hence Ra + Rb =Rab (Rac+Rbc) _eq. (iii) 

Rab+Rac+Rbc 

Simalarly for Y-network resistance between terminal B and C is 

 
Rbc = Rb+Rc 

 
For the Δ network resistance between terminal B and C is 

Rbc = Rbc II (Rab+Rac) 

Rb+Rc = Rbc (Rab+Rac) eq. (iv) 

Rbc+Rab+Rac 

 
Similarly we can find Rac between terminal A and C is 

 
Ra+Rc = Rac(Rab+Rbc) eq. (v) 

Rac+Rab+Rac 

Subtracting eq.(v) from the sum of eq.(iii) and eq.(iv) yields 

 
2 Rb = 2 Rab . Rbc 

Rab+Rbc+Rca 

 
Rb = Rab . Rbc 

Rab+Rbc+Rca 

Subtracting eq.(iv) from the sum of eq.(iii) & eq.(v) yields 

2 Ra = 2 Rab . Rac 

Rab+Rbc+Rac 



 

 

 

Ra = Rab . Rac 

Rab+Rbc+Rac 

Similarly subtracting eq.(iii) from the sum of eq.(iv) and eq.(v) yields 

2 Rc = 2. Rbc . Rca 

Rab+Rbc+Rca 

 
Rc = Rbc . Rca 

Rab+Rbc+Rca 

 

 

STAR TO DELTA CONVERSION 

Similarly we can find conversion formula for Y to Δ as 

Rab = Ra . Rb + Rb .Rc + Rc . Ra 

Rc 

 
Rbc = Ra . Rb + Rb .Rc + Rc . Ra 

Ra 

 
Rca = Ra . Rb + Rb .Rc + Rc . Ra 

Rb 

Therefore, the equivalent impedance of each arm of the star is given by the 
product of the impedance of the two delta sides that meet at its ends divided by 
the sum of 
there delta impedance 



 

Problem-1 

Convert the Y network to an equivalent Δ network. 
 

Problem-2 
 

 
 



 

 



 

 



 

 
 

Mutual inductance 

Mutual induction is a phenomenon when a coil gets induced in EMF across it due 
to rate of change current in adjacent coil in such a way that the flux of one coil 
current gets linkage of another coil. 

Definition of Mutual Inductance 

Mutual Inductance is the ratio between induced emf across a coil to the rate of 
change of current of another adjacent coil in such a way that two coils are in 
possibility of flux linkage. 

 
 

 
 



 

 

 
INTRODUCTION 

CHAPTER -2 
NETWORK THEOREMS 

Electric circuits on network consist of a number of interconnected single circuit elements. This 
circuit will generally contain at least one voltage on current source. The arrangement of elements 
results in a new set of constraints between currents and voltages. These new constraints and their 
corresponding equations added to the current-voltage relationships of the individual elements 
provide the solution of the network. There are different approaches for this but the solution is 
always unique. 
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i = V1-V2 + V1-V3   eq. (1) 

R1  R5 

 
Similarly at node 2 -i1= V2 – V1 , i2 = V2 , i3 = V2 – V3 

R1 R2 R3 

V2 – V1 + V2 –V3    + V2 = 0   eq.(2) 

R1 R3 R2 

At Node 3 Sum of currents leaving are 

-i3 = V3-V2 , i4 = V3 , -i5 = V3 – V1 

R3 R4 R5 

 
V3 – V2 + V3    + V3- V1   _ eq. (3) 

R3 R4 R5 

All the above these equation can be solved to determine the individual 

node voltages V1, V2& V3. 
Example 1 

Find the node voltages V1 and V2 for the 

circuit at figure. 

Solution At node 1 apply KCL sum of all 

the current leaving the node (1) is zero current leaving 

node 1 are V1, V1-V2 and -2A (2A is entering) 
10 15 

V1 + V1- V2_ -2 = 0 

10 15 
V1( 

1 
+ 

1 
) – 

𝑉 2 
= 2 

10   15 15 

5V1 – 2V2   = 60 ----------------------------------------------------- eq. (1) 
Similarly At node 2 current leaving are 𝑉2 , 𝑉2−𝑉1 and -4A 

5 15 
𝑉2 

+ 
𝑉2−𝑉1 

-4 = 0
 

5 15 

4V2 – V1 = 60   eq. (2) 
Solving the above two equations (1) & (2) 

We get V1 = 20V, V2 = 20V 

 
Example 2 

Find V1, V2 and V3 for the circuit in figure. 

Solution 

At node 1 

V1 –V2 + 
𝑉1−𝑉3 

+ 3 = 0 
2 

3V1-2V2-V3 = -6   eq. (1) 
At node 2 

V2-V1 + 
𝑉2 

+ 
𝑉2−𝑉3 

= 0 
3 4 

-12V1 + 19V2 -3V3 = 0 _ eq.(2) 
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At node 3  
𝑉3−𝑉1 

+ 
𝑉3 

+ 
𝑉3−𝑉2 

= 7
 

2 5 4 

-10V1- 5V2 +19V3 = 140   eq. (3) 
 

 
Example 3 

 
 

Solution 

By solving we get V1 = 5.238V, V2 = 5.12V & V3 = 11.47V 

Find the node voltage V1& V2 

 
To write node equation treat node 1 and 2 

and the voltage source together as a Sort of Super node 
and apply KCL to both nodes at the same time. The 

super node is individual by dotted line. 

Applying KCL, we get 
-1+𝑉1 + 𝑉2 + 𝑉2 = 0 

 
 
 
 

eq. (1) 
2 2 5 

And from voltage source V1 – 2 = V2   eq. (2) 

Now we can solve for V1 and V2 using both equations. 
 

MESH ANALYSIS 
Mesh analysis is restricted to the category called Planar Circuit whereas 

nodal analysis can applied to any electrical circuits. A planer circuit is a circuit if the 

diagram of the circuit can be drawn on a plane surface without crossover. Example of 

planner and non-planar circuit are shown in fig (2.7). 

 

Figure depicts a circuit comprising two meshes. 
 

They are  
Mesh 1: V5  R1  R2 V3 

Mesh 2: R3  R4  R2 R3 

The two mesh currents are labeled as i1 and i2 flowing in clockwise 

direction. Now we will apply KVL around each mesh. 
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For mesh 1 

i1R1 + (i1-i2) R2 = V5   eq. 1 
For mesh 2 

i2R3 + i2R4 + R2 (i2-i1) = 0   eq. 2 
 

Eq.(1) & (2) can be rewritten as 

(R1+R2)i1 – R2i2 = V5   eq.3 
-R2i1 + (R2+R3+R4) i2 = 0 

Finally the two equations can be put in matrix form 

[𝑅1 + 𝑅2 −𝑅2 ]  [
i1

]= [
𝑉5

] 
−𝑅2 𝑅2 + 𝑅3 + 𝑅4 i2 0 

 
Which can be solved for i1 and i2. 

 

Examples 4 find the mesh current i1 and i2 for the circuit shown in figure. 
 

For first mesh 2i1+3(i1 – i2) = 9 eq.1 
4i2-5+3(i2-i1) =0 eq.2 

Equation can be rewritten as 

5i1 -3i2 = 9   eq.3 
-3i1+7i2 = 5   eq.4 

By solving i1 = 3A, i2 = 2A 
 

Example 5 

Determine the voltage drop across 3Ω resister using mesh analysis in figure. 
 

 

 

SUPERMESH 

When a current source is common to two meshes we use the concept of 

super mesh to analysis the circuit using mesh current method. A super mesh is a larger 

mesh created from two meshes that have a current source as common element. A super 

mesh encloses more than one mesh for each common current source between two 

meshes, the number of meshes reduce by one, thus reading the number of mesh 
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Solution to Example 6 

The 2A current source is common to mesh 2 & 3. So we create a super 

mesh as shown in dotted line. 

For super mesh 

6i3 + 3i2 + 5(i2-i1)-8= 0 
 -5i1 + 8i2 + 6i3 = 8   eq. 1 

 

For mesh 1 

-12+8+5(i1-i2) = 0 
 5i1 – 5i2 = 4   eq.2 

 

From current source i2-i3 = 2 
By solving we get i2 = 2.664 

Voltage across 3Ω resistor = 2.66×3 = 8v. 
 

Example 7 

Use node analysis to find V1, V2, V3 & i1 

Solution 

Applying KCL at node 1 

We get 
𝑉1−𝑉2 

+ 
𝑉1−𝑉3 

= 2
 eq. 1 

 
 

20 2 

Applying KCL at node 2 
𝑉2−𝑉1 

+ 
𝑉2 

+ 8 = 0
 eq.2 

 
 

20 4 

Applying KCL at node 3 
𝑉3 

+ 
𝑉3−𝑉1 

= 8
 

 
eq.3 

 
 

2 2 

By solving all these equations we can get V1= 16v, V2= -24v, V3 = 16v, i1 = 0A 

 
Examples 8 

Find the voltage V2 using mesh analysis. 
 

Solution 

Applying KVL for super mesh 

30i1+20(05+i1)+10=0 
 50i1 = -20 
 i1 = -

2 
= - 0.4A, V2 = 20(i1+0.5) 

5 

= 20×0.1 = 2v 
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Superposition Theorem 
In a linear bilateral network containing two or more independent sources, 

the voltage across or current in any branch is algebraic sum of individual voltages or 

currents produced by each independent sources acting separately with all the 

independent sources set equal to zero. 

Procedure to solve the circuit using superposition theorem 

1. Select only one source and replace all other sources with 
their internal resistance. If the source is an ideal current 

source replace it by open circuit. If the source is an ideal 

voltage source, replace it by short circuit. 

2. Find the current and its direction through the desired 

branch. 

3. Add all the branch currents to obtain the actual branch 

current. 
 

Examples 9 

Find the   current   through   2Ω   register   using 

superposition theorem. 
 

Solution 

First we find the contribution to I due to 5V 

source by replacing 2A current source with open-circuit. 

Applying KCL for the circuit in figure. 

 
𝑉−5 

+ 
𝑉 

+ 
𝑉 

= 0
 

3 2 6 

V = 
5 

v, I1 = 
5 

Amp 
3 6 

Next we find the contributions I2 due to 2A current source 

by replacing the voltage source by short-circuit. 
 

 
 

I2 = 2×
2 

= 1Amp 
4 

Total current flowing through the 2Ω resistor = I1+I2 = 1+
5 

= 
11

Amp 
6 6 
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Limitation of Super-position Theorem 
1. Not applicable to the circuits consisting of only dependent sources. 

2. Not applicable to the circuits consisting of non-linear elements. 

3. Not applicable for calculation of power, since power is potential is propositional 

to the sequence of current or voltage. 

4. Not useful to the circuits consisting of less than two independent sources. 
 

Example 10 

Find current I using Superposition theorem for the circuit in the figure. 

 

Solution: 

The circuit has three voltage sources. First we find the contribution to I1 

due to 2V. Therefore short-circuit the remaining two voltage sources as shown in figure. 
 

I1 =
 2 

= 
10 

= 
5 

A
 

  

2+
6      16 8 

 

I1 = 
5 

×
2 

= 
1 

A 
8     5 4 

 
 

 

When 4V acting as shown in figure 

I1 =
 4 = 5 A 

 

2+
6      4 

 

I2 = 
5 

×
2 

= 
1 

A 
4     5 2 

 
 

 

When 3V is acting alone as shown in figure 

I3 = - 
3
Amp 

4 

When all the sources are acting together total 

current will be 
I = I1 + I2 + I3 = 

1 
+ 

1 
- 

3
= 

1+2−3
= 0Amp 

4 2     4 4 
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Example 11 

Find current Ia 

Solution: Let us assume that only 12V is acting done and current 

through it ia1, open circuit 4A and 1A current source and short-circuit the 6V voltage 

source as in the figure. 

 
 

 
Ia1 = - 

12 
= - 

4
A 

9 3 

When 4A current source is acting alone as shown in figure. 
Ia2 = 

4×6 
= 

24 
= 

8 
A 

9 9 3 

 

 

When 1A is acting alone as shown in figure. 
Ia3 = 1×

3 
= 

1 
A 

9 3 

 

 

When 6V is acting alone as in figure 

 
Ia4 = 

6 
= - 

2 
A 

9 3 

 

When all the sources are acting total current will be 

Ia = Ia1 + Ia2 + Ia3 + Ia4 

= - 
4 

+ 
8 

+ 
1 

- 
2 

= 
−4+8+1−2 

3 3 3     3 3 

= 
3 

3 

= 1amp 

Ia = 1A 

 
APPLICATION OF SUPER-POSITION THEOREM 

The super-position theorem is applicable for any linear circuit having time 

varying or time invariant elements. It is useful in circuit analysis for finding current & 

voltage when the circuit has a large number of independent sources. 
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LIMITATION OF SUPER-POSITION THEOREM 
1. Not applicable to the circuits consisting of dependent sources. 

2. Not applicable to the circuits consisting of non linear elements like 

diode, transistor etc. 

3. Not applicable for calculation of power. 

THEVENIN’S THEOREM 
Thevenin’s theorem states that any linear active two terminal network 

containing resistance and voltage sources or current sources can be replaced by a single 
voltage sources Vth in series with single resistance Rth. The Thevenin equivalent voltage 

Vth is the open circuit voltage at the network terminal and the Thevenin resistance Rth is 

the resistance between the network terminals when all the sources are replaced with 

their internal resistance. 

Fig (a) shows a linear network containing resistance, voltage sources or 

current sources with output terminal AB using Thevenin’s theorem the linear network 

can be replaced by single voltage source Vth in series with a single resistor Rth as shown 

in fig(b). Now any resistor can be corrected between the terminal AB and current 

through it can be obtained easily. 

Procedure to find the current through a branch using Thevenin’s Theorem. 
 

1. Remove the branch through which current is to be found and mark the terminal 

AB. 

2. Calculate the open circuit voltage Vth between the terminal AB. 

3. Replace the independent sources with their internal resistance. (if the internal 

resistances are zero, then voltage source should be short-circuited and current 

source should be open-circuited) 

4. Calculate Rth between the terminal AB. 

5. Correct thevenin’s voltage sources in series with Thevenin resistance with output 

terminal AB. 

6. Correct the removed resistance between AB and find the current through it. 
 

 

Example  
Find VTH, RTH 

 
nd the load current 

flowing through and load voltage across the load 

resistor in figure by using T evenin’s Theorem. 
 

Solution 

Step 1 

Open the 5kΩ load resistor figure. 

Step 2 

Calculate / measur the Open Circuit 

Voltage. This is the Thevenin Voltage (VTH) 
figure. We have already removed the load resistor from figure 1, so the circuit became an 

open circuit as shown in fi 2. Now we have to calculate the Theve in’s Voltage. Since 
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3mA Current flows in both 12kΩ and 4kΩ resistors 

as this is a series circuit because current will not 

flow in the 8kΩ resistor as it is open. 

So 12V (3mA x 4kΩ 

4kΩ resistor. We also kn 

flowing through the 8kΩ 

will appear across the 

w that current is not 

resistor as it is open 

circuit, but the 8kΩ resistor is in parallel with 4k 

resistor. So the same voltage (i.e. 12V) will appear 

across the 8kΩ resistor a 
terminals. So, 

4kΩ resistor. Therefore 12V will appear across the AB 

 

VTH = 12V 
 

Step 3 

Open Current   Sources   and   Short 

Voltage Sources figure. 
 

 

Step 4 

Calculate /measure the Open Circuit 

Resistance. This is the Thev nin Resistance (RTH) 

We have Reduced the 48V DC source 

to zero is equivalent to repl 

(3), as shown in figure () 

resistor is in series with a p 

ce it with a short in step 

We can see that 8kΩ 

rallel connection of 4kΩ 

resistor and 12k Ω resistor. i.e.: 

8kΩ + (4k Ω || 12kΩ) ….. (|| = in parallel with) 

RTH = 8kΩ + [(4kΩ x 12kΩ) / (4kΩ + 12kΩ)] 

RTH = 8kΩ + 3kΩ 

RTH = 11kΩ 
 

 
Step 5 

 

 
Connect the 

 

 
RTHin series with Voltage 

Source VTH and re-connect the load resistor. This is 
shown in figure i.e. Thevenin circuit with load 

resistor. 
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Step 6 

Now apply the last step i.e. calculate the 

total load current & load voltage as shown in figure. 

IL = VTH/ (RTH + RL) 

= 12V (11kΩ + 5kΩ) → 

= 12/16kΩ 

IL = 0.75mA 

And 

VL = ILx R 

VL = 0.75mA x 5kΩ 

VL = 3.75V 

NORTON’S THEOREM 

Norton’s theorem states that any linear active two 

contains resistance and voltage source or current source can be 

 
 
 
 
 
 
 
 
 
 

terminal network 

replaced by single 

current source or current source can be replaced by single current source IN in parallel 

with a single resistance RN. The Norton’s equivalent current IN is the state circuit current 
through the terminals AB and resistance RN   is the resistance between the network 
terminals when all the sources are replaced with internal resistances. 

Procedure to find the current through a branch using Norton’s theorem. 

1. Remove the branch through which current is to be found and mark terminal AB. 

2. Short-circuit the terminal AB and find current through it and denote it as ISC. 
3. Replace the independent sources with their internal resis ances (if internal 

resistances are zero then voltage source should be short circuited and current 

sources should be open-circulated). 

4. Calculate RN between the terminals AB. 

5. Connect the short-circuit current (Norton’s) In in parallel with RN with output 

terminal AB. 

Correct the removed branch between terminals AB and find current. 

Example 

Find the current in RL using Norton’s Theorem 
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After Norton conversion . . . 
 
 

Remember 

a current source is a co 

that 

ponent 

whose job is to provide a constant 

amount of current, outputting as 

much or as little voltage necessary 

to maintain that constant current. 

 
 
 

As with Thevenin's 

Theorem, everything in the original 

circuit except the load resistance has 

been reduced to an equival nt circuit 

that is simpler to analyze. Also similar 

to Thevenin's Theorem are the steps 

used     in     Norton's     Theorem     to 

calculate the Norton source current (INorton) and Norton resistance (RNorton). 

As before, the first step is to identify the load resistance and remove it 

from the original circuit. 

Then, to find the 

Norton current (for the 

source in the Norton e 

circuit), place a direct wir 

current 

uivalent 

(short) 

connection between the load points 

and determine the resultant current. 

Note that this step is exactly 

opposite the respective step in Thevenin's Theorem, where we replaced the load 

resistor with a break (open circuit). 

With zero voltage dropped 

between the load resis or connection 

points, the current through R1 is strictly a 

function of B1's voltage and R1's resistance: 

7 amps (I=E/R). Likewise, the current 

through R3 is now strictly a function of B2's 

voltage and R3's resistance: 7 amps (I=E/R). 
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The total current through the short between the load connection points is the sum of 

these two currents: 7 amps + 7 amps = 14 amps. This figure of 14 amps becomes the 

Norton source current (INorton) in our equivalent circuit. 

Current through load of 2  resistor = 14 X .8 /2.8 = 4 Amp. 

Maximum Power Transfer Theorem 

In a linear bilateral network containing an independent voltage 
source in series with resistance RS delivers maximum power to the load resistance RL 

when RL=RS 

Let us consider a circuit shown in fig(a) 

Current I= 𝑉𝑠 
𝑅𝑠+𝑅𝑙 

Power delivered to the load PL = I2RL = (
 𝑉𝑠 

)2 RL 
𝑅𝑠+𝑅𝑙 

To find the value of RL for optimum power transfer differentiate PL with respect to RL and 
equal to 2nd 

𝑑𝑃𝑙 

𝑑𝑅𝑙 
2    

(𝑅𝑠+𝑅𝑙)2−2𝑅𝑙(𝑅𝑠+𝑅𝑙) 

(𝑅𝑠+𝑅𝑙)2 

⇒ (RS +RL)X = 2 RL (RS/+RL) 
⇒RS + RL = 2RL 

 
⇒ 

 
Maximum power will be = (VS/2RL)2 × RL = VS

2/4RL 

Example 

Find the value of RL for the given network below 
that the power is maximum? And also find the Max Power 
through load-resistance RL by using maximum power transfer 
theorem? 

 
 

RS = RL 

Solution 

For the above network, 
we are going to find-out the value of 
unknown resistance called “RL”. In 
previous post, I already show that when 
power is maximum through load- 
resistance is equals to the equivalent 
resistance between two ends of load- 
resistance after removing. 

So, for finding load- 
resistance RL. We have to find-out the 
equivalent resistance like that for this 

circuit. 
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Now, For finding Maximum Power through 
load-resistance we have to find-out the value of Vo.c. Here, 
Vo.c is known as voltage between open circuits. So, steps are 

For this circuit using Mesh-analysis. We get 

Applying Kvl in loop 1st:- 

6-6I1-8I1+8I2=0 

-14I1+8I2=-6 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ (1) 

Again, Applying Kvl in loop 2nd:- 

-8I2-5I2-12I2+8I1=0 

8I1-25I2=0 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ (2) 

On solving,eqn (1) & eqn (2), We get 

I1 = 0.524 A 

I2 = 0.167 A 

Now, From the circuit Vo.c is 

VA-5I2- VB = 0 

Vo.c/ VAB= 5I2 = 5X0.167 = 0.835v 

So, the maximum power through the RL is given by:- 
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Milliman’s Theorem 

This theorem states that Any number of current sources in parallel may be 

replaced by a single current source whose current is the algebraic sum of individual 

source currents and source resistance is the parallel combination of individual source 

resistance. 

The alternative statement of Milliman’s theorem is Any number of voltage 

source   V1,   V2,   V3,   ----------Vn    having   source   resistance   R1,   R2,   R3 ------------------------------ Rn 

respectively connected in parallel may be replaced y a single voltage source Vn and 

resistance Rn where 
Vn = 

1
 where G1 = 

1 
, G2 = 

1
 etc. 

𝐺1+𝐺2±−−−±𝐺𝑛 𝑅1 𝑅2 

The above two statements are identical because a voltage source can be 

connected in to current source and vice-versa. 

Reciprocity Theorem 

The Reciprocity theorem states that if the source voltage and zero 

resistance ammeters are integrated, the magnitude of the current through the ammeter 

will be the same. In lead the principle states that in a linear positive network, supply 

voltage V and current I are mutually transferable. The ratio of V and I is called the 

transfer resistance. 
Problem 1 
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Problem 2 
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Problem 3 
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Problem 4 
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Problem 5 
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Problem 6 
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CHAPTER-3 

POWER RELATION IN AC CIRCUITS  

&  

TRANSIENT RESPONSE OF PASSIVE CIRCUITS  

                                                                                              

T WHAT IS ALTERNATING CURRENT (A.C.) 

Alternating current is the current which constantly changes in amplitude, 
and reverses direction at regular intervals. We know that direct current flows only in 
one direction, and that the amplitude of current is determined by the number of 
electrons flowing past a point in a circuit in one second. If, for example, a coulomb of 
electrons moves past a point in a wire in one second and all of the electrons are moving 
in the same direction, the amplitude of direct current in the wire is one ampere. 
Similarly, if half a coulomb of electrons moves in one direction past a point in the wire in 
half a second, then reverses direction and moves past the same point in the opposite 
direction during the next half-second, a total of one coulomb of electrons passes the 
point in one second. The amplitude of the alternating current is one ampere. 

 

PROPERTIES OF ALTERNATING CURRENT 
An A.C. source of electrical power 

changes constantly in amplitude and the + 
changes are so regular Alternating voltage and 0 

current have a number of properties associated – 
with any such waveform. These basic properties 
include the following list: 

 

Frequency 
One of the most important properties of any regular waveform identifies 

the number of complete cycles it goes through in a fixed period of time. For standard 
measurements, the period of time is one second, so the frequency of the wave is 
commonly measured in cycles per second (cycles/sec) and, in normal usage, is 
expressed in units of Hertz (Hz). It is represented in mathematical equations by the 
letter ‘f ’. 

 

Period 
Sometimes we need to know the amount of time required to complete 

one cycle of the waveform, rather than the number of cycles per second of time. This is 
logically the reciprocal of frequency 

Wavelength 

Because an A.C. wave moves physically as well as changing in time, 
sometimes we need to know how far it moves in one cycle of the wave, rather than how 
long that cycle takes to complete. This of course depends on how fast the wave is moving 
as well. The Greek letter (lambda) is used to represent wavelength in mathematical 
expressions. And, λ= c/f. As shown in the figure to the above, wavelength can be 
measured from any part of one cycle to the equivalent point in the next cycle. 
Wavelength is very similar to period as discussed above, except that wavelength is 
measured in distance per cycle while period is measured in time per cycle. 

 
 
 

 
Time     
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Time 

Voltage and 
current in phase 

Peak to 
peak 
value 

Peak 
value 

Amplitude 

Mathematically, the amplitude of a sine wave is the value of that sine wave 

at its peak. This is the maximum value, positive or negative, that it can attain. However, 

when we speak of an A.C. power system, it is more useful to refer to the effective voltage 

or current. 

 
THE SINE WAVE 

In discussing alternating current and voltage, you will often find it 
necessary to express the current and voltage in terms of maximum or peak values, peak- 
to-peak values, effective values, average values, 
or instantaneous values. Each of these values 
has a different meaning and is used to describe   Vm

 

a different amount of current or voltage. Im
 

Peak Value[Ip] 

Refer to figure, it is the maximum 

value of voltage [Vp] or Current [Ip]. The peak 
value applies to both positive and negative 

values of the cycle. 

Peak-Peak value [Ip-p] 

 
 
 
 
 
 

 
Fig. 1.6 

During each complete cycle of ac there are always two maximum or peak 
values, one for the positive half-cycle and the other for the negative half-cycle. The 
difference between the peak positive value and the peak negative value is called the 
peak-to-peak value of the sine wave. This value is twice the 
maximum or peak value of the sine wave and is sometimes 
used for measurement of ac voltages. 

Note the difference between peak and peak 

to-peak values in the figure. Usually alternating voltage and 

current are expressed in effective values rather than in 

peak-to-peak values. 

 
INSTANTANEOUS VALUE 

The instantaneous value of an alternating voltage or current is the value of 
voltage or current at one particular instant. The value may be zero if the particular 
instant is the time in the cycle at which the polarity of the voltage is changing. It may also 
be the same as the peak value, if the selected instant is the time in the cycle at which the 
voltage or current stops increasing and starts decreasing. 

There are actually an infinite number of instantaneous values between 

zero and the peak value. 

AVERAGE VALUE 

The average value of an alternating current or voltage is the average of all 
the instantaneous values during one alternation. Since the voltage increases from zero to 

peak value and decreases back to zero during one alternation, the average value must be 

some value between those two limits. 
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The average value of A.C. is the average over one complete cycle and is 

clearly zero, because there are alternately equal positive and negative half cycles. 

 
Average voltage = 

2 
 peakvalue 



ROOT MEAN SQUARE VALUE 
Circuit currents and voltage in A.C. circuits are generally stated as root- 

mean-square or rms values rather than by quoting the maximum values. The root- 
mean-square for a current is defined as the value of steady state current which when 
flowing through a resistor for a given time produces the same amount of hit as 
generated by the alternating current when passed through the same resistor for the 
same time. 

 

Irms 



Vrms 

 
 

 1.11 

Irms  m
 

Form Factor = 
 

Vave 

It is the ratio of RMS value to average vale of voltage or current. 
 

SINE WAVES IN PHASE 
When a sine wave of voltage is applied to a pure resistance, the resulting 

current is also a sine wave. This follows Ohm’s law which states that current is directly 
proportional to the applied voltage. To be in phase, the two sine waves must go through 
their maximum and minimum points at the same time and in the same direction as 
shown in the figure. 

 
 
 
 
 
 
 
 

1 T 

T 0  i
2dt 

Voltage wave 

Current wave 

270_ 360_ 

0_ 90_ 180_ Time 
axis 

E1 E2 

90_ 

360_ Time 

0_ 90_180_ 270_ 

Time 
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0_ 90_ 180_ 270_ 360_ 

Sine Waves Out of Phase 
Figure shows voltage wave E1 which is considered to start at 0° (time 

one). As voltage wave E1 reaches its positive peak, voltage wave E2 starts its rise (time 
two). Since these voltage waves do not go through their maximum and minimum points 
at the same instant of time, a phase difference exists between the two waves. The two 
waves are said to be out of phase. For the two waves in figure, the phase difference is 
90°. 

 

PHASORS 
In an a.c. circuit, the e.m.f. or current vary sinusoidally wih time and may 

be mathematically represented as 
E = E0 sin ωt 

and I = I0 sin (ωt ± θ) 
Where θ is the phase angle between alternating e.m.f. and current. 
Displacement of S.H.M. also varies sinusoidally with time i.e. 

Y = A sin ωt 
And its instantaneous value is equal to the projection of the amplitude A 

on Y-axis. Therefore,instantaneous values of alternating e.m.f. (E) and current (I) may be 
considered as the projections of e.m.f. amplitude (E0) and current amplitude (I0) 
respectively. The quantities, such as alternating e.m.f. and alternating current are called 
phasor. Thus a phasor is a quantity which varies sinusoidally with time and represented 
as the projection of rotating vector. 

 

PHASOR DIAGRAM 
The generator at the power station which produces our A.C. mains rotates 

through 360 degrees to produce one cycle of the sine wave form which makes up the 
supply. 

In the next diagram there are two sine waves. 
They are out of phase because they do not start from zero at the same time. 
To be in phase they must start at the same time. 
The waveform A starts before B and is LEADING by 90 degrees. 

 
 

+ 
+

 

 
 
 
 
 
 
 
 

– – 

 
 

Waveform B is LAGGING A by 90 degrees. 
 

The next left hand diagram, known as a PHASOR DIAGRAM, shows this in another way. 

AB 
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VL 
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VL 

V 

 VR 

XL 

Z 



 

It is sometimes helpful to treat the phase as if it defines a vector in a 
plane. The usual reference for zero phase is taken to be the positive x-axis and is 
associated with the resistor since the voltage and current associated with the resistor 
are in phase. The length of the phasor is proportional to the magnitude of the quantity 
represented, and its angle represents its phase relative to that of the current through 
the resistor. The phasor diagram for the RLC series circuit shows the main features. 

 
 
 

VC XC 

 
VR 

VR 
VC 

R 

Note that the phase angle, the difference in phase between the voltage and 
the current in an A.C. circuit, is the phase angle associated with the impedance Z of the 
circuit. 

 
 

 
 

RESISTANCE AC CIRCUIT 

AC SERIES CIRCUIT 

 
written as 

A resistance R connected  to an ac source is shown. Its voltage can be 

 
et  Etm sin wt 

i  Im sin wt 
 

 
i  

Etm sin wt  I 
R m 

 
sin wt 

 
 

 
 
 
 
 

The above two equations depict that voltage and current in resistive 

network are in phase. Figure shows the voltage and current waveform and phasor 

diagram. 

VL 
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POWER IN RESISTIVE NETWORK 

The instantaneous power 

curve is plotted in figure it is seen that 

the power curve is always positive in 

case of resistive network and equal to 
 
 
 
 
 
 
 

p  e  i  E I sin2 wt  E I  1 cos 2wt  
 

Etm Im 
 

Etm Im 
cos 2wt  

   t tm   m tm m  2  2 2 
 

The above power equation shows that the power has two components, one is 

constant i.e. 
Etm Im & an ac component 

Etm Im cos 2wt . The average value of ac component 
2 2 

in one cycle is zero. Therefore Average power p  
Etm Im = 

Etm  
Im

 

2 
 Et I 

 

Inductance AC Circuit 

Figure shows an inductance 

L connected to an ac supply which voltage 

is given by v = ET m sin wt , i = 

I sin  wt 
  


m  2 

 

The above equation shows 

that current lags the applied voltage by  90∘ Where I 

 

 
ET m , the quantity wL controls the 
wL 

current inductor and this quantity wL is known as inductive reactance denoted XL 

.Hence XL  wL 

POWER IN INDUCTIVE NETWORK 

The instantaneous power in a purely inductive network is 

p  e  i  E sin wt  I sin  wt  
 


T T m m  2 

 

 ET m Im sin wt.cos wt 

 
ET m Im  sin 2wt 

2 

The average power in a pure inductor during a cycle is zero. 

m 
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CAPACITANCE IN AC CIRCUIT 

Figure shows a capacitor C connected to an ac source equation of voltage & 

current are given below 

v =V sin wt , I sin  wt  
 


m m  2 

 



Equation shows that current leads voltage by  90∘ and 

capacitive reactance denoted as XC . Its unit is ohm. 

 
Im  

1
 

 
 

wC 

 
Where 

1
 

wC 

 
 
is known as 

 

 

 
  

 

POWER IN CAPACITIVE NETWORK 

The instantaneous power in a purely capacitive network is 
p  v  i  V sin wt  I sin  wt  

 


m m  2 
 

= 
Vm Im sin 2wt 

2 
The average power in a pure capacitive network is zero. 

 
 

SERIES RL NETWORK 

Figure shows a resistor (R) and inductor (L) series network with its phasor 

diagram and impedance diagram. As discussed earlier ER   is in phase with I and EL 

I by  90∘ . 

leads 
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ET  EL  ER  I  R  jXL 

Hence  IZ  I  R  jXL 

 Z   R  jX L   R  jwL 
 
 
 

Where magnitude of Z 


The quantities R, XL , Z are shown in the impedence diagram. 

POWER IN SERIES RL NETWORK 

The average power in RL series circuit is 

p  
ET m Im cos  

ET m . 
Im

 

2 
cos  ET I cos



E I cos is known as active power. p  E I cos  E I 
R 
 

ET .IR  I 2 R ∵ I  
ET

 
   

T T T Z Z Z 
 
 
 
 
 
 

 

 
 

Thus the active power in ac circuit represents the power dissipated across 
resistance. It is measured in watt. The product of RMS voltage & current i.e. VI is known 
as apparent power and measured in volt ampere. The ration of active power to apparent 

power equals to cos where  is the phase angle between V & I. The term cos is called 

R2  X 2 L 
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1 

power factor of the circuit. The power factor is zero in case of pure inductive or 

capacitive network. The power factor of a circuit may be either leading or lagging. A 

leading power factor means that the current in the circuit leads the voltage and lagging 

power factor means the current lags the voltage. The power factor of a circuit is the ratio 

of resistance to impedence . 

The instantaneous power across inductor of capacitor is known as reactive 

power. That is Q  I 2 X  I 2wL  I 2Z sin  E  I sin 


The reactive power does not contribute anything to the net energy transfer 

from source to load. Yet it constitutes a loading of the equipment. 

The apparent power VI, active power VI cos and reactive power VI sin 
is also applicable in this case too. Current in RC circuit leads the apply voltage and 

therefore the power factor is leading. 

SERIES RC NETWORK 

Figure shows a 

series RC network 
 

E  RI  j 
I 

 




 
J 


T wC I  R wC 

 

 IZ  I  R  
J  

 Z  R  
j 
 R  jX  wC  wC 

 

XC  Capacitive Re ac tan ce  
wC

 

 

magnitudeofZ 










SERIES R-L-C CIRCUIT 

C 

R2 
1 

w2C 2 
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Consider a series R-L-C circuit as shown in the figure. The voltage VR is in 

phase with the current, the voltage V  leads the current by  90 ∘ and the voltage V   lags the L C 

current by  90∘ . The total impedence 

 
 

 
We can find 

Z  ZR  ZL  ZC 

 R  j  XL   XC 

that the reactance is positive if 

 
 
 

XL ≻ XC and negative if 

XC ≻ XL . If XL  ≻ XC the circuit behaves like an R-L series circuit and current lags 

voltage by an angle  if XC  ≻ XL the circuit behaves as an R-C series circuit and current 

leads the applied voltage by angle . The phasor diagram for both cases are shown. 

The magnitude of the impedence is given by 
 

Z 


wL  
1
 

i  
vs 

z 

  tan1 wC 
R 

 
 
 
 
 

R2   X L C  X 
2 
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Transient Response of Simple Circuit (DC) 
Circuits that contain capacitors and inductors can be represented by 

differential equation. If a circuit contains one resistor and one Inductor (or one 

capacitor), it can be represented by first order differential equation. On the other hand if 

a circuit contains a resistor, inductor and Capacitor it can be represented by a second 

order differential equation. The solution of the differential equation represents the 

response of the circuit. The response consists of two parts (1) Transient response (2) 

Steady State response. The transient response depends on the circuit elements and initial 

energy stored in it. To obtain the transient response of the network it is necessary to find 

the initial state of the network. 

 
Initial Condition 

Initial condition of a circuit is important to be calculated when a change of 

state occurs and the change of state of the network occurs when the switch change its 

position at time t=0. The value of voltage, current derivatives of both at t=0- and t=0+, 

that is immediately before and after change of switch position. Initial conditions in a 

circuit depends on the past history of the network prior to t= 0-. We will assume that the 

switch in the network has been in a position for a long time and at t=0, the switch 

changes its position. That is we say the circuit is in steady state at the time of switching. 

 
Initial condition in circuit elements. 

1. Resistor:- By Ohm’s Law we have V= IR , if there is a change in voltage, the 

current through resistance will change simultaneously. Similarly if the current 

change, voltage across resistance changes simultaneously. 

2. Inductor:- Current through inductor cannot change instantaneously, if the 

current through an inductor before switching is zero, then the current through 

inductor after switching is also zero. 

i.e. iL(0+) = iL(0-)=0 

In the same way if the current through inductor before switching is I0, then the 

current through inductor after switching is also I0. i.e. iL(0+)=iL(0-)= I0. 

3. Capacitor:- Voltage across capacitor cannot change instantaneously. If the voltage 

across capacitor before switching is zero, then the voltage across capacitor after 

switching is also zero. 

VC(0+) = VC(0-)= 0 

If the voltage across capacitor prior to switching is V0 then the voltage across 

capacitor immediately after switching is 

VC(0+) = VC(0-)=V0 
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∫i 

The equivalent from of the elements in terms of the initial condition of the 

elements is shown below. 
 
 
 

ELEMENT EQUIVALENT FORM AT 
t=0 

t=0+/EQUATION CIRCUIT AT 
t= ∞ 

 

 
 

 
 
 

 
 

 
 

 

 

 
 

 
 

 
 
 

 
 

 

 

 
 

 
 

 
 

 

 
 

To solve the initial condition of an element it is necessary to study the 

steady state behavior of this element. The steady state behavior can be obtained from the 

basic relations. 

VL = L 
𝑑i

 
𝑑𝑡 

ic= C 
𝑑𝑣𝑐

 
𝑑𝑡 

At t=∞, VL = 0 hence the inductor acts as short-circuit 

Similarly at t= ∞, iL=0 hence the capacitor acts as open-circuit. 

 
Example: In the network shown in fig.1, the switch K is called at t=0 with the capacitor 

𝑑i 

uncharged. Find the value of i, 
𝑑𝑡

, at t= 0+. 

 

 

Solution: 

 
 

 
⇒ 500i + 

 
Apply KVL to the circuit 

R + 1 i 𝑑𝑡 = V ------------------------------------------------------------------- eq. (i) 
𝐶 

 
∫ i 𝑑𝑡 = 50 --------------------------------------------------------- eq. (ii) 

 

VC (0+) = VC(0-)= 0 
At t= 0+ 500i (0+)+ 0= 50 

i(0+) = 50 
500 

= 0.1A 
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Differentiating eq. (ii) 
𝑑i 

500
𝑑𝑡

+ i = 0-------------------------------------------------------------- eq. (iii) 

 

𝑑i 
At t= 0+ 500

𝑑𝑡
(0+) =   -i (0+)- = - ×0.1 

𝑑i 
⇒   

𝑑𝑡
(0+) = - = -2000Amp/sec. 

 

 

Differentiating eq. (iii) 

 
 

500 
𝑑i 

= 0
 

𝑑𝑡 
 
 
 

 
⇒ 500 (0+) = 

𝑑i 

𝑑𝑡
(0+) = 

 
(-2000) 

 

⇒ (0+) = = 4×106 A/sec2 

 
Transient Response of series R-L circuit having DC Excitation. 

Consider a R-L series circuit as shown in figure. The switch is closed at time t=0 
Applying KVL 

Ldi(t) + Ri(t) = V 
𝑑𝑡 

⇒ 
di(t) 

+ 
𝑅
i(t) = 

𝑉 

𝑑𝑡 𝐿 𝐿 

General solution of the differential equation 

𝑉 
 R

t
 

i(t) = 
𝑅 

+ ke L 

Since inductor behaves as an open circuit as switching 
i(0+)=0 
0= 𝑉 +K or K= - 𝑉 

𝑅 𝑅 

Therefore i(t) = 𝑉 - 𝑉 e-R/L(t) = 𝑉 [1-e(-R/L)t] 
𝑅     𝑅 𝑅 

Voltage across inductor VL(t)=L 
di(f) 

= Ve(-R/L)t
 

𝑑𝑡 

Voltage across resistor VR(t)= V[1-e(-R/L)t] 

At t=0, i(t)=0, VL(t) = V VR(t)=0 
At t=∞, i(t)=

𝑉
, VL(t)=0, VR(t)= V 

𝑅 
At t= 

𝐿 
i(t)=

𝑉 
(1-e-1) = 0.632 

𝑉 
, VL(t) = 0.368V 

𝑅 𝑅 𝑅 

i(t) & V(t) are plotted in figure. 

  
L

 
R 

is known as the time content and is defined as the interval after 

which current or voltage charges 63.2% of its total change. 
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∫ 

Let us analyses the transient condition of the R-L circuit as the circuit 

reaches steady state charging switch to S1 

 
di1 t 

L  Ri1 t   0 
dt 

 

Solution of i1(t) = K1e(-R/L)t 

Steady state current i(0+) = i(∞) = 𝑉 
𝑅 

𝑉 = K1e0 
𝑅 

⇒ K1 = 𝑉 
𝑅 

𝑉 

 
 

di1 t 
Therefore i1(t) = 

𝑅 
e(-R/L)t , V1R(t) = Ve(-R/L)t, VL

1(t) = L 
dt 

= -Ve(-R/L)t 

i1(t) and V1R(t), V1L(t) are plotted below. 
 
 

 
 

Transient response of series R-C circuit having DC excitation. 
 

Consider a series R-C circuit as shown in figure. The switch S is closed at 

time t=0. Applying KVL 

Ri(t) + 1 i (𝑡) dt = V 
𝐶 

Differentiating, we get 
R di(f) + 1 i(t) = 0 

𝑑𝑡 𝐶 

General solution of this differential equation is 

i(t) = K e – t/RC 

at t= 0+ , i(0+) = 𝑉 
𝑅 

∵ capacitor acts as a short-circuit at switching. 
𝑉 = Ke0 ⇒K= 𝑉 
𝑅 𝑅 

Therefore i(t) = 𝑉 e –t/RC 
𝑅 
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Voltage across the resistor and capacitor are 

VR(t)= i(t).R = Ve-t/RC
 

VC(t) = = -t/RC dt 

= (-RC) e-t/RC = V(1-e-t/RC) 

At t=0, i(t) = VC (t) = 0 , VR (t)=V 

At t= ∞, i(t) = 0 , Vc(t)=V, VR(t) = 0 

At t= RC i(t) = e-1 = 0.368 , 

Vi(t)= V(1-e-1) = 0.632V 
Let us analyze another transient 

condition of R-C circuit as the circuit reaches 

at steady state (at t=∞) by closing switch at point 2 

Ril(t) + 1(t) =0 

Differentiating we get 

R + i1 t  = 0 

Its solution is i1(t) = Ke-t/RC 

However at t=0+, capacitor keeps the steady state voltage VC(0+) = V and 

direction of i1(t) during discharge is negative 

i(0+) = - - 

- - = Ke0 ⇒K= - - 
 

V1
R(t) = i1(t). R= -V e-t/RC

 

 

VC
1 (t) = 1(t) dt = V e-t/RC

 

 
 
 

 

i(t) = - e-t/RC 



  

CHAPTER-4 

RESONANCE AND COUPLED CIRCUITS 

Resonance circuit:- 

An electric circuit which has very low impedance at a certain frequency. Resonant circuits are 
often built using an inductor, such as a coil, connected in parallel to a capacitor. The response of 
the circuit to signals of different frequencies is a function of the inductance and capacitance of the 
circuit and peaks at one frequency value, at which the current flow resonates most strongly with 
the input signal. Resonant circuits are used in radio and television tuners to pick out broadcast 
signals of specific frequencies 
 

Tuned circuit:-Any electrically conducting pathway containing both inductive and capacitive 
elements. If these elements are connected in series, the circuit presents low impedance 
to alternating current of the resonant frequency, which is determined by the values of 
the inductance and capacitance, and high impedance to current of other frequencies.In a parallel-
connected tuned circuit, the impedance is high at the resonant frequency, low at others. 

 

 

RESONANCE 

Consider a series R-L-C circuit 

as shown in the figure. The impedence of the 

circuit is given by 

Z  R  j  XL  XC 


where X is inductive reactance = wL and X = capacitive reactance = 
1   

. 
 

L C wC 
 
 
 

 

 

https://www.britannica.com/technology/electric-circuit
https://www.britannica.com/science/alternating-current
https://www.britannica.com/science/inductance
https://www.britannica.com/science/capacitance
https://www.britannica.com/science/electric-current


 

 

 

As frequency of the supply is increased XL  increases and XC  decreases. At 

one particular frequency XL = XC  and the total reactance of the circuit become zero. At 

this particular frequency the impedence is resitive and voltage & current are in phase. 

This phenomenon is known as resonance. 

XL  XC 

 2 f0L 
1 

 

 

2 f0C 

 f0 

f0 is called as frequency of resonance. Impedence Z of the R-L-C series 

circuit is equal to R at resonance and current is equal to 
V 

. 
R 

 

Q Factor 

 

 
 
The ratio of capacitor voltage or inductor voltage at resonant frequency to 

supply voltage is a measure of quality of a resonance circuit. This term is known as 

quality factor (Q factor). 

At the frequency of the resonance ( f0 ) 
 

V  IX    
V 

X ∵ I  
V

 
  

L L R L R 

Q  
VL

  
XL 

 
2 f0 L 

V R R 

 
VC  

XC   
1
 

   

V R 

Bandwidth 

2 f0 RC 

 

 

At resonant frequency current in the 

R-L-C series circuit is maximum. Let us define two 

frequencies w1 & w2 at which current is 707Imax . 

The frequency 

frequency. 

w1 & w2 are   called   half   power 

Bandwidth = w2  w1 
 
 

Where w2 = upper half power frequency, w1 = lower half power frequency. 

 

 

1 

2 LC 



 

 

Bandwidth of a Series RLC Resonance Circuit 

 
Then the relationship between resonance, bandwidth, selectivity and quality factor for a series resonance 
circuit being defined as: 

1). Resonant Frequency, (ƒr) 

 

 
2). Current, (I) 

 

3). Lower cut-off frequency, (ƒL) 

 

Upper cut-off frequency, (ƒH) 



 

 

1 1 

 

5). Bandwidth, (BW) 

 
6). Quality Factor, (Q) 

 

 

Relationship between Q and Bandwidth of R-L-C series circuit 

Bandwidth = w2  w1 
 

At w = w1 , the reactance is capacity as XC ≻ XL  
 

Hence 
1 

 
 

w1C 
 w1L  R …………………….. eq.1 

 

At w = w2 the reactance is inductive as XL  ≻ XC 
 

Hence w2 L 
1 

 
 

w2C 
 R ........................... eq. 2 

 

From equation1 we get w 2 LC  w RC 1  0



  

Dividing by LC we get w 2  w 
R 
 

1 
 0 

  

1 1 L LC 

w  
R 


1 2L 

 

Similarly from equation 2 

w 2  
R 

w  
1 

 0 
  

2 L 2 LC 
R 

w2  
2L 



Hence bandwidth 
 

w  w  R 
 

R 
 

R 
   

2 1 2L 2L L 

 2  f  f   
R

 
 

2 1 L 
 

 f  f  R 
 

f0 
  

2 1 2 L Q 

 Q 
f0 

 

f2  f1 

 
w0 

BW 

 

The Parallel Resonance Circuit 

In many ways a parallel resonance circuit is exactly the same as the 
series resonance circuit we looked at in the previous tutorial. Both are 3-element 

networks that contain two reactive components making them a second-order circuit, 
both are influenced by variations in the supply frequency and both have a frequency 

point where their two reactive components cancel each other out influencing the 

characteristics of the circuit. Both circuits have a resonant frequency point. 
 

The difference this time however, is that a parallel resonance circuit is 
influenced by the currents flowing through each parallel branch   within   the 
parallel LC tank circuit. A tank circuit is a parallel combination of L and C that is used in 
filter networks to either select or reject AC frequencies. Consider the parallel RLC circuit 
below. 

4L2 LC 

R2    


 1 

4L2 LC 

R2   


 1 



  

 

Let us define what we already know about parallel RLC circuits. 
 

 

 
 
 
 
 

 
A parallel circuit containing a resistance, R, an inductance, L and a 

capacitance, C will produce parallel resonance (also called anti-resonance) circuit when 
the resultant current through the parallel combination is in phase with the supply 
voltage. At resonance there will be a large circulating current between the inductor and 
the capacitor due to the energy of the oscillations, then parallel circuits produce current 
resonance. 

A parallel resonant circuit stores the circuit energy in the magnetic field of 
the inductor and the electric field of the capacitor. This energy is constantly being 
transferred back and forth between the inductor and the capacitor which results in zero 
current and energy being drawn from the supply. This is because the corresponding 
instantaneous values of IL and IC will always be equal and opposite and therefore the 
current drawn from the supply is the vector addition of these two currents and the 
current flowing in IR. 

In the solution of AC parallel resonance circuits we know that the supply 
voltage is common for all branches, so this can be taken as our reference vector. Each 
parallel branch must be treated separately as with series circuits so that the total supply 
current taken by the parallel circuit is the vector addition of the individual branch 
currents. Then there are two methods available to us in the analysis of parallel 
resonance circuits. We can calculate the current in each branch and then add together 
or calculate the admittance of each branch to find the total current. 

We know from the previous series resonance tutorial that resonance 
takes place when VL = -VC and this situation occurs when the two reactance are 
equal, XL = XC. The admittance of a parallel circuit is given as: 

 

 

 

 

 



  

 

Resonance occurs when XL = XC and the imaginary parts of Y become zero. 
Then: 

 

 

 

 

 

Notice that at resonance the parallel circuit produces the same equation 
as for the series resonance circuit. Therefore, it makes no difference if the inductor or 
capacitor is connected in parallel or series. Also at resonance the parallel LC tank circuit 
acts like an open circuit with the circuit current being   determined   by   the 
resistor, R only. So the total impedance of a parallel resonance circuit at resonance 
becomes just the value of the resistance in the circuit and Z = R as shown. 

 

 

   
 

 

 

 

 

Impedance in a Parallel Resonance Circuit 
 

Note that   if   the   parallel   circuit’s       
impedance is at its maximum at resonance then   

consequently, the circuit’s admittance must be at its   

minimum and one of the characteristics of a parallel   

resonance circuit is that admittance is very low limiting  the 
circuits current. Unlike the series resonance circuit, the  
resistor in a parallel resonance circuit has a damping 
effect on the circuit’s bandwidth making the circuit 
less selective. 

 

 



  

e 

n 

w 

t 

s 

e 
o 

R 

t 
u 

e 

n 

d 

m 

a 

h 

Also, since the circuit current is constant for any valu of impedance, Z, 
the voltage across a parall l resonance circuit will have the same shape as the total 
impedance and for a parallel circuit the voltage waveform is generally taken from across 
the capacitor. 

We now know that at the resonant frequency, ƒr the admittance of the 
circuit is at its minimum a d is equal to the conductance, G given by 1/R because in a 
parallel resonance circuit the imaginary part of admittance, i.e. the susceptance, B is 
zero because BL = BC as sho n. 

 

Bandwidth & Selectivi  y of a Parallel Resonance Circuit 

The bandwidth of a parallel resonance circuit is defi 

 
 

ed in exactly the 
same way as for the series resonance circuit. The upper and lower cut-off frequencies 
given as: ƒupper and ƒlower respectively denote the half-power frequencies where the 
power dissipated in the circuit is half of the full power dissipate at the resonant 
frequency 0.5( I2 R ) which gives us the same -3dB points at a current value that is equal 
to 70.7% of its maximum re 

As with the s 

onant value, ( 0.707 x I )2 R. 

ries circuit, if the resonant frequency re 

 
ains constant, an 

increase in the quality fact r,Q will cause a decrease in the bandwidth and likewise, a 
decrease in the quality factor will cause an increase in the bandwidth 
= ƒr /Q or BW = ƒ2 - ƒ2. 

Also changing the ratio between the inductor, L and t 

s defined by: BW 

 
e capacitor, C, or 

the value of the resistance, the bandwidth and therefore the frequency response of the 
circuit will be changed for a fixed resonant frequency. This technique is used extensively 
in tuning circuits for radio and television transmitters and receivers. 

The selectivity or Q-factor for a parallel resonance circuit is generally 
defined as the ratio of the circulating branch currents to the supply current and is given 
as: 

 
 

 
 

Note that the Q-factor of a parallel resonance 
circuit is the inverse of the expression for the Q-factor of the 
series circuit. Also in series resonance circuits the Q-factor 
gives the voltage magnifica ion of the circuit, whereas in a 
parallel circuit it gives the c rrent magnification



 

Example No1 

A parallel resonance network consisting of a resistor of 60Ω, a capacitor of 120uF and an inductor of 200mH is 
connected across a sinusoidal supply voltage which has a constant output of 100 volts at all frequencies. 
Calculate, the resonant frequency, the quality factor and the bandwidth of the circuit, the circuit current at 

resonance and current magnification. 

 
1. Resonant Frequency, ƒr 

 

2. Inductive Reactance at Resonance, XL 

 

3. Quality factor, Q 

 

4. Bandwidth, BW 

 

5. The upper and lower -3dB frequency points, ƒH and ƒL 

 

6. Circuit Current at Resonance, IT 

At resonance the dynamic impedance of the circuit is equal to R 

 

7. Current Magnification, Imag 

 

Note that the current drawn from the supply at resonance (the resistive current) is only 1.67 amps, while the 
current flowing around the LC tank circuit is larger at 2.45 amps. We can check this value by calculating the 
current flowing through the inductor (or capacitor) at resonance. 



 

 

 

 

COMPARISON BETWEEN SERIES AND PARALLEL RESONANCE: 
 
 

Similarities: 
(1) At Resonance Condition the Power Factor of the RLC Series Circuit is Unity. 

At Resonance Condition, the power factor of the RLC parallel Circuit Also 

Unity(1). 

(2) The equation of Resonant Frequency of RLC series Circuit is, 
 

 
The equation of Resonant Frequency of RLC Parallel Circuit is, 

 
 

(3) The Bandwidth of RLC series circuit at Resonance Condition, 

 
 

The Bandwidth of RLC parallel circuit at Resonance Condition, 

 
 

(4) The equation of Half Power frequencies for RLC series circuit, 
 

 
The equation of Half Power frequencies for RLC Parallel Circuit



 

 
 

APPLICATIONS OF SERIES RESONANCE CIRCUIT: 
 
 

(1) The main application of Series Resonance circuit is Tuning. They are used for 

Tuning purpose. 

(2) Series Resonance circuit also used as Oscillator Circuit. 

(3) Series resonance circuit is used as a Voltage Amplifier. 

(4) Series Resonance circuits are used in the communication system for signal 

processing. 

(5) Series resonance Circuit also used as High-frequency filter circuit. 
 
 

APPLICATION OF PARALLEL RESONANCE CIRCUIT: 
 
 

(1) The parallel resonance circuit is also used for Tuning purpose. 

(2) The parallel resonance circuit is used in Induction heating system. 

(3) The parallel resonance circuit is used as a Current Amplifier. 

(4) The parallel resonance circuit is also used as a filter circuit. 

(5) The parallel resonance circuits are used in RF amplifiers. 

 

Difference Between Series and Parallel Resonance Circuits 
 
Now we are going to learn about basic difference between series and parallel 
resonance circuits 
 

Series Resonance Circuits Parallel Resonance Circuits 

1. Series Resonance circuit is an 
acceptor circuit. 

Parallel Resonance circuit is an rejecter 
circuit 

2. At resonant the impedance is a 
maximum equal to the resistance in 
circuit. 

 
At resonance the impedance is 

maximum nearly equal to infinity. 



 

3. In resonance Current at resonance 
is maximum = V/R 

In Parallel circuit current at resonance 
is minimum = V/(L/CR) 

4. In Series circuit power factor is 
unity 

In parallel power circuit power factor 
is unity 

 
5. Series circuit magnifies voltage 

Parallel resonance circuit magnifies 
current 

6. Series resonance magnification 
in WL/R 

Parallel resonance circuit 
magnification is WL/R 

 
7. In series resonance effective 

impedance is R which is R= V/ 
Resonant current 

In parallel resistance effective 
resistance is L/CR 
It is basic difference between series and 
parallel resonance circuits 

8. Series Resonance used in the 
turning circuit to separate the wanted 
frequency from the incoming frequency 
by offering low impedance of that 
frequency 

 
Parallel Resonance used to present a 
maximum impedance to wanted 
frequency usually in the plate circuit of 
values. 
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CHAPTER 6 

LAPLACE TRANSFORM 

The Laplace domain or the "Complex s Domain" is the domain into which 

the Laplace transform transforms a time-domain equation. s  is a complex variable, 

composed of real and imagi ary parts: 
 

The Laplace domain graphs the real part (σ) as the horizontal axis, and 

the imaginary part (ω) as the vertical axis. The real and imaginary parts of s can be 

considered as independent quantities. The similarity of this notation with the notation 

used in Fourier transform t eory is no coincidence; for , the Laplace transform is 

the same as the Fourier transform if the signal is causal. 
 
 

The mathematical definition of the Laplace transform is as follows: 

 

 
 

 

 

The transfor 

 

 

, by virtue of the definite integral, rem 

 

 

ves all t from the 
resulting equation, leaving instead the new variable s, a complex num 

written   as . In essence, this transform takes the 

er that is normally 

function f(t), and 

"transforms it" into a function in terms of s, F(s). As a general rule the transform of a 
function f(t) is written as F(s). Time-domain functions are written in lower-case, and the 

resultant s-domain functions are written in upper-case. 

We will use the following notation to show the transfor of a function: 
 

We use this notation, because we can convert F(s) back into f(t) using 

the inverse Laplace transform. 
 

The Inverse Transfor  
 

Initial Value Theorem 
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This is useful for finding the initial conditions of a function needed when 
we perform the transform of a differentiation operation. 
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Final Value Theorem 

Similar to the Initial Value Theorem, the Final Value Theorem states that 
we can find the value of a function f, as t approaches infinity, in the laplace domain, as 
such: 

 

 

This is useful for finding the steady state response of circuit. The final 
value theorem may only be pplied to stable systems. 

 

Laplace Transformati  n of Signal Waveform 

Laplace transform of unit step function is 
1
 
S 

 

Laplace transform of ramp function is   
1

 
S 2 

 

Laplace transform of unit impulse function is unity. 

The laplace transform can be used independently o 

 
 

different circuit 
elements, and then the circuit can be solved entirely in the S Domain (Which is much 
easier). Let's take a look at some of the circuit elements: 

Resistor 
 

Resistors are time and frequency invariant. Therefore, the transform of a 
resistor is the same as the resistance of the resistor: 

 

Compare this result to the phasor impedance value for a resistance r: 
 

You can see very quickly that resistance values are very similar between 
phasors and laplace transforms. 

Ohm's Law 
 

If we transform Ohm's law, we get the following equation: 
 

Now, following ohms law, the resistance of the circuit element is a ratio of 
 
 

the voltage to the current. So, we will solve for the quantity , an   the result will be 
the resistance of our circuit element.  
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n 

m 

o 

 
 

This ratio, the input/output ratio of our resistor is an i portant quantity, 

and we will find this qua tity for all of our circuit elements. We can say that the 

transform of a resistor with resistance r is given by: 
 

Capacitors 
 
 
Let us look at the relationship between voltage, current, and capacitance, 

in the time domain: 

Solving for voltage, we get the following integral: 

 

Then, transforming this equation into the laplace domain assuming the 

zero initial condition, we get the following: 
 

 
 

Again, if we solve for the ratio , we get the following: 

Therefore, the transform for a capacitor with capacitance C is given by: 

  
 

Inductors  
 

Let us look at our equation for inductance: 
 

 
 

 
 

Putting this i 

we get the formula: 

to the laplace domain assuming the zer initial condition, 

 

 

 
 

 
 

And solving for our ratio , we get the following: 
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e 

d 

w 

 

 

 

Therefore, the transform of an inductor with inductance L is given by: 
 

Impedance 
 
 
Impedance of all the load elements can be combined into a single format 

dependent on s, we call the 

phasor representation. We 

). 

ffect of all load elements impedance, the same as we call it in 

enote impedance values with a capital Z (but not a phasor 

 
 

 
 
 
 
 
 
 
 

Determining electric current in circuits 
 

In the net 

character of the currents 

ork shown, determine the 

, , and assuming 
that each current is zero when the switch is closed. 
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u 

o 

n 

ve equations, we get 

Solution: 

Current flow at a joint in circuit 

Since the algebraic s m of the currents at any junction is zero, then 
 

Voltage balance on a circuit 

Applying the voltage law to the circuit on the left we get 

Applying again the voltage law to the outside circuit, given that E is co stant, we get 

    
 

 
 

Laplace transforms of current and voltage equations 

Transforming the ab 
 

 

 

 
The above three Laplace transformed equations show the benefits of 

integral   transformation   in converting   differential   equations into linear   algebraic 

equations that could be solved for the dependent variables (the three currents in this 

case), then inverse transformed to yield the required solution 
 
 
 

Example: Find the capacitor voltage. 

 vc (t) 





v L (t ) 




u (t ) 3 



v R (t ) 



1 H 

0.5 F 



64 
 

3 



VR ( s ) 


I (s) 

s 
s 

2 

c 

 
 
 

 


VL ( s ) 

 Vc (s) 




1 

 
 

 s 
 
 
 
 
 

 


VL (s) 



Vc (s)  VR (s) 




3 

s 

 
 
 
 
 

 
 
 
 

The capacitor’s voltage 

V (s)  
2 
 I (s)  

6
 

  

c s s(s 2 
 3s  2) 

 

Expanding V (s) by partial fraction 
c 

 
V (s)  6 

 
K1  

K2     
K3 

    

c s(s 1)(s  2) s s 1 s  2 

v (t)  3  6et  3e2t  u(t) 

2 
s 3 

s 
I (s) 




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 L 


R 

C 



 

Step response of an R-L circuit 

Consider the RL circuit as shown in the 

figure assuming the initial current to be zero. At t = 0 

the switch is closed and the voltage E is impressed on 

the circuit. The differential equation on application of 

KVL is 

 

Ri t   L 
di t  

 E 
dt 

 RI s  L sI s   i 

 

0  
E

 
 

 

 L  s 

 I ssL  R  
E 
∵ i 

 

0  0 
s L 

E E  
 I s  s  L  

E 1 


    1 


sL  R s  s  
R 

 
E 

R  s 


 R
t 


s  

L 

takinginverseLT  i(t)  1 e L  


R  

Step response of an R-C circuit 

Consider the R-C circuit as shown in the 

figure assuming the initial current to be zero. At t = 0 the 

switch is closed and the voltage E is impressed on the 

circuit. The differential equation on application of KVL is 
 

 

1 t 

Ri t    i t dt  E 
0 

 RI s  
1  I s  

 
E

 
C    s    s 

 I s R 
 

1  
 

E 
 

  






 I s 

Cs  s 
E 

R 
s  

1
 

RC 

takinginverseLTi(t) 


E t

 1 

e RC 

R 
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C 

1 2 

Step response of an R-L-C circuit 

Consider the R-L-C series circuit as shown 

in the figure assuming the initial current to be zero. At t 

= 0 the switch is closed and the voltage E is impressed 

on the circuit. The differential equation on application of 

KVL is 
 
 

di t  1 t 
Ri t   L 

dt 
  i t dt  E 

0 

 RI s   L sI s  
1  I s  

 
E

   C    s  s 
 

E E 

 I s  




s 
sL  R 

 1
 


s2 





L 
R 

s 
 1 

Cs L LC 
E 

 
 

 I s   L  K1  
K2 

 
  

s  s1 s  s2  s  s1  s  s2 

 i(t)  K es1t  
 K es2t

 

Where s1 & s2 are the roots of the characteristic equation 
 

s2  R  
1 

and K & K are constant. 
 

Ls LC 1 2 

Value of s1 & s2 can be determined as 

 
R 

s1 , s2   
2L 


 R 

2
 

 2L  
 

LC 
1 

 



67 
 

Problem 1 
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Problem 2 
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Problem 3 
 



70 
 

Problem 4 
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CHAPTER 7 
 

TWO-PORT NETWORKS 
 

+ 

v 
 

- 
 

 
 

a) One port network is a two terminal electrical network in which, current 

enters through one terminal and leaves through another terminal. Resistors, 

inductors and capacitors are the examples of one port network because each 
one has two terminals. One port network representation is shown in the 

following figure. 
b) A pair of terminals at which a signal (voltage or current) may enter or leave is 

called a port. 

c) A network having only one such pair of terminals is called a one-port network. 

d) No connections may be made to any other nodes internal to the network. 

e) By KCL, we therefore havei1=i1 
 

 two port network is a pair of two terminal electrical network in which, current 
enters through one terminal and leaves through another terminal of each port. Two 
port network representation is shown in the following figure.Type equation here. 

 Two-port networks are used to describe the relationship between a pair of 

terminals 

 The analysis methods we will discuss require the following conditions be 

met 

1. Linearity 

2. No independent sources inside the network 

3. No stored energy inside the network (zero initial conditions) 

4. i1 = i1 and i2 = i 

 

 
One-Port 
Network 

i1 

 

 

+ 
i2 

v1 

+ 

v2 

- i'1 i'2 - 

Two-Port 
Network 

 
work 
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Two Port Network Parameters 

There are various parameters needed to analyze a two port 

network. For examples, Z parameters, Y parameters, h 

parameters, g parameters, ABCD parameters etc. 

Let us discuss these network parameters one by one to gain a 

better understanding of their application and uses. 

 

Impedance Parameters 

 Suppose the currents and voltages can be measured. 

 Alternatively, if the circuit in the box is known,V1 and V2 can be calculated 
based on circuit analysis. 

 Relationship can be written in terms of the impedance parameters. 

 We can also calculate the impedance parameters after making two sets of 

measurements. 

V1=z11I1+z12I2 

V2=z21I1+z22I2 

If the right port is an open circuit (I2=0), then we can easily solve for two of 

the impedance parameters: Similarly by open circuiting left hand port (I1=0 ) we can 

solve for the other two parameters. 

 

 

  

2 

https://www.electrical4u.com/impedance-parameter-or-z-parameter/
https://www.electrical4u.com/admittance-parameters-or-y-parameters/
https://www.electrical4u.com/hybrid-parameters-or-h-parameters/
https://www.electrical4u.com/hybrid-parameters-or-h-parameters/
https://www.electrical4u.com/abcd-parameters-of-transmission-line/
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Impedance Parameter Equivalent 
 

 

I1(s) 
 

+ 

V1(s) 

- 

 
z11 z22 

 
z12I2 z21I1 

I2(s) 
 

+ 

V2(s) 

- 
 
 
 
 
 

V1=z11I1+z12I2 

V2=z21I1+z22I2 

 
 

 Once we know what the impedance parameters are, we can model 

the behavior of the two-port with an equivalent circuit. 

 Notice the similarity to Th´evenin and Norton equivalents 
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I2 

V1 

I1 

V2 

I2 

I1 

V1 

V2 

I2 

V2 

Admittance Parameters 
 

I1=y11V1+y12V2 

I2=y21V1+y22V2 

Y11 = input admittance = 

 
 

 
V2  0 

 
 

Y21 = forward transfer admittance = V2  0 
 
 

Y22 = output admittance = V1  0 
 
 

Y12 = reverse transfer admittance = 

 
Hybrid Parameters 

V1  0 

V1=h11I1+h12V2 

I2=h21I1+h22V2 

 
h11 = input impedance = 

 
 
 

 
V2  0 

 
 
 

h21 = forward current ratio = V2  0 
 
 
 

h12 = reverse voltage ratio = I1  0 
 
 
 

h22 = output admittance = I1  0 

I1 

V1 

I1 

V2 

V1 

I1 

+ 
i2 

v1 

+ 

v2 

- i'1 i'2 - 

Two-Port 
Network 
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+ + 

V1 

_ 

20 20  V2 

_ 

I 

Example: 

 

Given the following circuit. Determine the Z parameters. 
 

 

I1 8  10  I2 
 
 
 
 
 
 
 
 
 
 
 

Z11 = 8 + 20||30 = 20 

Z22 = 20||30 = 12 

Z12  I1  0 
 

V  
20xI2 x20 

 8xI
 

 

 
Therefore z  

8xI2  8 Ω = z 
1 20  30 2 12 21 

2 
 

The Z parameter equations can be expressed in matrix form as follows. 
V1 

 
 z11 z12   I1 

V  z z    I 
 2   21 22   2 



V1 
 
20 8   I1 

V 
 8 12 I 


Example: 

 2     2 

Given the following circuit. Determine the Y parameters. 
 

I1 1  I2 

+ + 
V1 

1
 

s 
_ 

1 

s V2
 

_ 

 

I
1 

= y
11

V
1 

+ y
12

V
2 

I
2 

= y
21

V
1 

+ y
22

V
2 

V1 

I2 
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I2 

V1 

I2 

V2 

I 

V 11 V 

 
 
 
 
 
 
 
 
 
 

1 

To find y11 

2 s  2 


V1  I1 ( 2 1 s 
)  I1 

 2s 1
I 

So y11 1 y    1 
1 1 

 
V2  0 

 s  0.5 

To find y and y we reverse things and short V 
12 21 1 

 

y21  V2  0 
 

V1   2I2 
 

y21 
I2    = 0.5 S 
V1 

 
 
 
 
 
 
 
 
 
 
 
 

 
V   2I y      

I1
  0.5s 

 

2 1 12 V 2 

y  0.5  
1
 

 

22 s 

 
y    V  0 

 
V  I 

2s
 

 
y  0.5  

1
 

 

22 1 2 2 (s  2) 
22 

s 

I1 1 
I2 

+ 
V1 

_ 

1 
s 

+ 
s 

V2 
_ 

y    
I1   V  0 

12 V 1 
2 
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Problem 1 
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Problem 2 
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Problem 3 
 

Problem 4 
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CHAPTER 8 
 

LOW PASS FILTER INTRODUCTION 

Basically, an electrical filter is a circuit that can be designed to modify, 

reshape or reject all unwanted frequencies of an electrical signal and accept or pass only 
those signals wanted by the circuit’s designer. In other words they “filter-out” unwanted 

signals and an ideal filter will separate and pass sinusoidal input signals based upon 
their frequency. 

 
In low frequency applications (up to 100kHz), passive filters are generally 

constructed using simple RC(Resistor-Capacitor) networks, while higher frequency 
filters (above 100kHz) are usually made from RLC (Resistor-Inductor-Capacitor) 
components. 

Passive Filters are made up of passive components such as resistors, 
capacitors and inductors and have no amplifying elements (transistors, op-amps, etc) so 
have no signal gain, therefore their output level is always less than the input. 

Filters are so named according to the frequency range of signals that they 
allow to pass through them, while blocking or “attenuating” the rest. The most 
commonly used filter designs are the: 

 

 1. The Low Pass Filter – the low pass filter only allows low frequency signals from 

0Hz to its cut-off frequency, ƒc point to pass while blocking those any higher. 

 2. The High Pass Filter – the high pass filter only allows high frequency signals 

from its cut-off frequency, ƒc point and higher to infinity to pass through while 

blocking those any lower. 

 3. The Band Pass Filter – the band pass filter allows signals falling within a certain 

frequency band setup between two points to pass through while blocking both the 

lower and higher frequencies either side of this frequency band. 

 4 Band Stop Filter - It is so called band-elimination, band-reject, or notch filters; 

this kind of filter passes all frequencies above and below a particular range set by 

the component values. 

Simple First-order passive filters (1st order) can be made by connecting 
together a single resistor and a single capacitor in series across an input signal, (Vin) 
with the output of the filter, (Vout ) taken from the junction of these two components. 
Depending on which way around we connect the resistor and the capacitor with regards 
to the output signal determines the type of filter construction resulting in either a Low 
Pass Filter or a High Pass Filter. 

As the function of any filter is to allow signals of a given band of 
frequencies to pass unaltered while attenuating or weakening all others those are not 
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wanted, we can define the amplitude response characteristics of an ideal filter by using 
an ideal frequency response curve of the four basic filter types as shown. 

 
IDEAL FILTER RESPONSE CURVES 

 

A Low Pass Filter can be a combination of capacitance, inductance or 
resistance intended to produce high attenuation above a specified frequency and little or 
no attenuation below that frequency. The frequency at which the transition occurs is 
called the “cutoff” frequency. The simplest low pass filters consist of a resistor and 
capacitor but more sophisticated low pass filters have a combination of series inductors 
and parallel capacitors. In this tutorial we will look at the simplest type, a passive two 
component RC low pass filter. 

 
THE LOW PASS FILTER 

A simple passive RC Low Pass Filter or LPF, can be easily made by 
connecting together in series a single Resistor with a single Capacitor as shown below. 
In this type of filter arrangement the input signal (Vin) is applied to the series 
combination (both the Resistor and Capacitor together) but the output signal (Vout ) is 
taken across the capacitor only. This type of filter is known generally as a “first-order 
filter” or “one-pole filter”, why first-order or single-pole?, because it has only “one” 
reactive component, the capacitor, in the circuit. 

 
RC LOW PASS FILTER CIRCUIT 

As  mentioned 
previously in the Capacitive 
Reactance tutorial, the reactance of a 
capacitor varies inversely with 
frequency, while the value of the 
resistor remains constant as the 
frequency changes. At low 
frequencies the capacitive reactance, 
(Xc) of the capacitor will be very 
large compared to the resistive value of the resistor, R and as a result the voltage across 
the capacitor, Vc will also be large while the voltage drop across the resistor, Vr will be 
much lower. At high frequencies the reverse is true with Vc being small and Vr being 
large. 

While the circuit above is that of an RC Low Pass Filter circuit, it can also 
be classed as a frequency variable potential divider circuit similar to the one we looked 
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at in the Resistors tutorial. In that tutorial we used the following equation to calculate 
the output voltage for two single resistors connected in series. 

 
 
 
 
 
 

 

 

We also know that the capacitive reactance of a capacitor in an AC circuit 
is given as: 

 

 
 

 

Opposition to current flow in an AC circuit is called impedance, 
symbol Z and for a series circuit consisting of a single resistor in series with a single 
capacitor, the circuit impedance is calculated as: 

 

 
 

Then by substituting our equation for impedance above into the resistive 
potential divider equation gives us: 

 
RC POTENTIAL DIVIDER EQUATION 

 

 
 

So, by using the potential divider equation of two resistors in series and 
substituting for impedance we can calculate the output voltage of an RC Filter for any 
given frequency. 
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LOW PASS FILTER EXAMPLE 

A Low Pass Filter circuit consisting of a resistor of 4k7Ω in series with a 
capacitor of 47nF is connected across a 10v sinusoidal supply. Calculate the output 
voltage (Vout ) at a frequency of 100Hz and again at frequency of 10,000Hz or 10kHz. 

 
 
 

 
Voltage Output at a Frequency of 100Hz. 

 

 
 
 
 

 

 
Voltage Output at a Frequency of 10,000Hz (10kHz). 

 

 
 
 
 

FREQUENCY RESPONSE 

We can see from the results above that as the frequency applied to the RC network 
increases from 100Hz to 10 kHz, the voltage dropped across the capacitor and therefore 
the output voltage (Vout) from the circuit decreases from 9.9v to 0.718v. 

By plotting the networks output voltage against different values of input frequency, 
the Frequency Response Curve or Bode Plot function of the low pass filter circuit can be 
found, as shown below. 
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Frequency Response of a 1st-order Low Pass Filter 

 
 
 

 

 

 

The Bode Plot shows the Frequency Response of the filter to be nearly flat 
for low frequencies and the entire input signal is passed directly to the output, resulting 
in a gain of nearly 1, called unity, until it reaches its Cut-off Frequency point (ƒc). This is 
because the reactance of the capacitor is high at low frequencies and blocks any current 
flow through the capacitor. 

After this cut-off frequency point the response of the circuit decreases to 
zero at a slope of -20dB/ Decade or (-6dB/Octave) “roll-off”. Note that the angle of the 
slope, this -20dB/ Decade roll-off will always be the same for any RC combination. 

Any high frequency signals applied to the low pass filter circuit above this 
cut-off frequency point will become greatly attenuated, that is they rapidly decrease. 
This happens because at very high frequencies the reactance of the capacitor becomes 
so low that it gives the effect of a short circuit condition on the output terminals 
resulting in zero output. 

Then by carefully selecting the correct resistor-capacitor combination, we 
can create a RC circuit that allows a range of frequencies below a certain value to pass 
through the circuit unaffected while any frequencies applied to the circuit above this 
cut-off point to be attenuated, creating what is commonly called a Low Pass Filter. 
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For this type of “Low Pass Filter” circuit, all the frequencies below this 
cut-off, ƒc point that are unaltered with little or no attenuation and are said to be in the 
filters Pass band zone. This pass band zone also represents the Bandwidth of the filter. 
Any signal frequencies above this point cut-off point are generally said to be in the 
filters Stop band zone and they will be greatly attenuated. 

This “Cut-off”, “Corner” or “Breakpoint” frequency is defined as being the 
frequency point where the capacitive reactance and resistance are equal, R = Xc = 4k7Ω. 
When this occurs the output signal is attenuated to 70.7% of the input signal value or - 
3dB (20 log (Vout/Vin)) of the input. Although R = Xc, the output is not half of the input 
signal. This is because it is equal to the vector sum of the two and is therefore 0.707 of 
the input. 

As the filter contains a capacitor, the Phase Angle (Φ) of the output 
signal LAGS behind that of the input and at the -3dB cut-off frequency (ƒc) and is - 
45o out of phase. This is due to the time taken to charge the plates of the capacitor as the 
input voltage changes, resulting in the output voltage (the voltage across the capacitor) 
“lagging” behind that of the input signal. The higher the input frequency applied to the 
filter the more the capacitor lags and the circuit becomes more and more “out of phase”. 

The cut-off frequency point and phase shift angle can be found by using 
the following equation: 

 
CUT-OFF FREQUENCY AND PHASE SHIFT 

 

 
 

 

 
 

Then for our simple example of a “Low Pass Filter” circuit above, the cut- 
off frequency (ƒc) is given as720Hz with an output voltage of 70.7% of the input voltage 
value and a phase shift angle of -45o. 

 
HIGH PASS FILTERS 

A High Pass Filter or HPF, is the exact opposite to that of the previously 

seen Low Pass filter circuit, as now the two components have been interchanged with 

the output signal ( Vout ) being taken from across the resistor as shown. 
 

Where as the low pass filter only allowed signals to pass below its cut-off 
frequency point, ƒc, the passive high pass filter circuit as its name implies, only passes 
signals above the selected cut-off point, ƒc eliminating any low frequency signals from 
the waveform. Consider the circuit below. 
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THE HIGH PASS FILTER CIRCUIT 
 

 
 

In this circuit arrangement, the reactance of the capacitor is very high at low 
frequencies so the capacitor acts like an open circuit and blocks any input signals 
at Vin until the cut-off frequency point (ƒc) is reached. Above this cut-off frequency 
point the reactance of the capacitor has reduced sufficiently as to now act more like a 
short circuit allowing the entire input signal to pass directly to the output as shown 
below in the High Pass Frequency Response Curve. 

 
FREQUENCY RESPONSE OF A 1ST ORDER HIGH PASS FILTER. 
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The Bode Plot or Frequency Response Curve above for a High Pass filter is 
the exact opposite to that of a low pass filter. Here the signal is attenuated or damped at 
low frequencies with the output increasing at +20dB/Decade (6dB/Octave) until the 
frequency reaches the cut-off point ( ƒc ) where again R = Xc. It has a response curve 
that extends down from infinity to the cut-off frequency, where the output voltage 
amplitude is 1/√2 = 70.7% of the input signal value or -3dB (20 log (Vout/Vin)) of the 
input value. 

Also we can see that the phase angle (Φ) of the output signal LEADS that 
of the input and is equal to+45o at frequency ƒc. The frequency response curve for a 
high pass filter implies that the filter can pass all signals out to infinity. However in 
practice, the high pass filter response does not extend to infinity but is limited by the 
electrical characteristics of the components used. 

The cut-off frequency point for a first order high pass filter can be found 
using the same equation as that of the low pass filter, but the equation for the phase 
shift is modified slightly to account for the positive phase angle as shown below. 

 
CUT-OFF FREQUENCY AND PHASE SHIFT 

 
 
 
 
 
 
 

 
 

The circuit gain, Av which is given as Vout/Vin (magnitude) and is calculated as: 
 

 
 
 
 
 
 

 

 
HIGH PASS FILTER EXAMPLE. 

Calculate the cut-off or “breakpoint” frequency ( ƒc ) for a simple high 
pass filter consisting of an82pF capacitor connected in series with a 240kΩ resistor. 
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BAND PASS FILTERS 

The cut-off frequency or ƒc point in a simple RC passive filter can be 
accurately controlled using just a single resistor in series with a non-polarized 

capacitor, and depending upon which way around they are connected either a low pass 
or a high pass filter is obtained. 

 
One simple use for these types of Passive Filters is in audio amplifier 

applications or circuits such as in loudspeaker crossover filters or pre-amplifier tone 
controls. Sometimes it is necessary to only pass a certain range of frequencies that do 
not begin at 0Hz, (DC) or end at some high frequency point but are within a certain 
frequency band, either narrow or wide. 

By connecting or “cascading” together a single Low Pass Filter circuit with 
a High Pass Filter circuit, we can produce another type of passive RC filter that passes a 
selected range or “band” of frequencies that can be either narrow or wide while 
attenuating all those outside of this range. This new type of passive filter arrangement 
produces a frequency selective filter known commonly as a Band Pass Filter or BPF for 
short. 

 
BAND PASS FILTER CIRCUIT 

 

 
 

Unlike a low pass filter that only pass signals of a low frequency range or 
a high pass filter which pass signals of a higher frequency range, a Band Pass 
Filters passes signals within a certain “band” or “spread” of frequencies without 
distorting the input signal or introducing extra noise. This band of frequencies can be 
any width and is commonly known as the filters Bandwidth. 

Bandwidth is commonly defined as the frequency range that exists 
between two specified frequency cut-off points ( ƒc ), that are 3dB below the maximum 
centre or resonant peak while attenuating or weakening the others outside of these two 
points. 

Then for widely spread frequencies, we can simply define the term 
“bandwidth”, BW as being the difference between the lower cut-off frequency (ƒcLOWER ) 
and the higher cut-off frequency ( ƒcHIGHER ) points. In other words, BW = ƒH – ƒL. Clearly 
for a pass band filter to function correctly, the cut-off frequency of the low pass filter 
must be higher than the cut-off frequency for the high pass filter. 

The “ideal” Band Pass Filter can also be used to isolate or filter out certain 
frequencies that lie within a particular band of frequencies, for example, noise 



93 
 

cancellation. Band pass filters are known generally as second-order filters, (two-pole) 
because they have “two” reactive component, the capacitors, within their circuit design. 
One capacitor in the low pass circuit and another capacitor in the high pass circuit. 

 
Frequency Response of a 2nd Order Band Pass Filter. 

 

 
 

The Bode Plot or frequency response curve above shows the 
characteristics of the band pass filter. Here the signal is attenuated at low frequencies 
with the output increasing at a slope of +20dB/Decade (6dB/Octave) until the 
frequency reaches the “lower cut-off” point ƒL. At this frequency the output voltage is 
again 1/√2 = 70.7% of the input signal value or -3dB (20 log (Vout/Vin)) of the input. 

The output continues at maximum gain until it reaches the “upper cut-off” 
point ƒH where the output decreases at a rate of -20dB/Decade (6dB/Octave) 
attenuating any high frequency signals. The point of maximum output gain is generally 
the geometric mean of the two -3dB value between the lower and upper cut-off points 
and is called the “Centre Frequency” or “Resonant Peak” value ƒr. This geometric mean 
value is calculated as being ƒr 2 = ƒ(UPPER) x ƒ(LOWER). 

A band pass filter is regarded as a second-order (two-pole) type filter 
because it has “two” reactive components within its circuit structure, then the phase  
angle will be twice that of the previously seen first-order filters, i.e., 180o. The phase 
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a re: R1 = 10kΩ´s and C1 = 15nF. 

angle of the output signal LEADS that of the input by +90o up to the centre or resonant 
frequency, ƒr point were it   ecomes “zero” degrees (0o) or “in-phase” and then changes 
to LAG the input by -90o as the output frequency increases. 

The upper an   lower cut-off frequency points for a band pass filter can be 
found using the same formula as that for both the low and high pass filters, For example. 

 
 
 
 

 
Then clearly, the width of the pass band of the filter can be controlled by the 

positioning of the two cut-off frequency points of the two filters. 
 

Band Pass Filter Example 

A second-order band pass filter is to be constructed using RC 
components that will only   llow a range of frequencies to pass above 1kHz (1,000Hz) 
and below 30kHz (30,000Hz). Assuming that both the resistors have values of 10kΩ´s, 

 
 

The High Pass Filter Stage 

The value of 

 

the capacitor C1 required to give a cut-off frequency ƒL of 
1kHz with a resistor value of10kΩ is calculated as: 

 

 
 
 

Then, the values of R1 and C1 required for the high pass stage to give a 
cut-off frequency of 1.0kHz 

 
The Low Pass Filter Stage 

The value of the capacitor C2 required to give a cut-off frequency ƒH of 30kHz with a 
resistor value of10kΩ is calculated as: 

 

calculate the values of the t o capacitors required. 
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Then, the values of R2 and C2 required for the low pass stage to give a cut-
off frequency of 30kHz are, R = 10kΩ´s and C = 510pF. However, the nearest preferred 
value of the calculated capacitor value of 510pF is 560pF so this is used instead. 

With the values of both the resistances R1 and R2 given as 10kΩ, and the 
two values of the capacitors C1 and C2 found for the high pass and low pass filters 
as 15nF and 560pF respectively, then the circuit for our simple passive Band Pass 
Filter is given as. 

 
Completed Band Pass Filter Circuit 

 

 

 
 

 

 
Band Pass Filter Resonant Frequency 

We can also calculate the “Resonant” or “Centre Frequency” (ƒr) point of the band pass 
filter were the output gain is at its maximum or peak value. This peak value is not the 
arithmetic average of the upper and lower -3dB cut-off points as you might expect but is 
in fact the “geometric” or mean value. This geometric mean value is calculated as 
being ƒr 2 = ƒc(UPPER) x ƒc(LOWER) for example: 

 
Centre Frequency Equation 

 

 

 Where, ƒr is the resonant or centre frequency 

 ƒL is the lower -3dB cut-off frequency point 

 ƒH is the upper -3db cut-off frequency point 

And in our simple example above, the calculated cut-off frequencies were 
found to be ƒL = 1,060 Hz and ƒH = 28,420 Hz using the filter values. 

Then by substituting these values into the above equation gives a central 
resonant frequency of: 
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with each other instead of in series. (Figure below) 

 

Band-stop filters 

It is so called band-elimination, band-reject, or notch filters; this kind of 

filter passes all frequencies above and below a particular range set y the component 

values. Not surprisingly, it can be made out of a low-pass and a high-pass filter, just like 

the band-pass design, except that this time we connect the two filter sections in parallel 

 
 
 
 
 
 
 
 
 
 
 

 

System level block diagram of a band-stop filter. 

Constructed using two capacitive filter sections, it looks something like 

(Figure below). 

 
 
 
 

 



 

 Butterworth Filter 
 

A Butterworth filter is a type of signal processing filter designed to have a frequency 
response as flat as possible in the passband. Hence the Butterworth filter is also known as 
“maximally flat magnitude filter”. It was invented in 1930 by the British engineer and 
physicist Stephen Butterworth in his paper titled “On the Theory of Filter Amplifiers”. 
The frequency response of the Butterworth filter is flat in the passband (i.e. a bandpass 
filter) and roll-offs towards zero in the stopband. The rate of roll-off response depends on 
the order of the filter. The number of reactive elements used in the filter circuit will 
decide the order of the filter. 
The inductor and capacitor are reactive elements used in filters. But in the case of 
Butterworth filter only capacitors are used. So, the number of capacitors will decide the 
order of the filter. 
Here, we will discuss the Butterworth filter with a low pass filter. Similarly, the high pass 
filter can be designed by just changing the position of resistance and capacitance. 
Butterworth Low Pass Filter Design 
While designing the filter, the designer tries to achieve a response near to the ideal filter. 
It is very difficult to match results with the exact ideal characteristic. We need to use 
complex higher-order If you increase the order of the filter, the number of cascade stages 
with the filter is also increased. But in practice, we cannot achieve Butterworth’s ideal 
frequency response. Because it produces excessive ripple in the passband.In Butterworth 
filter, mathematically it is possible to get flat frequency response from 0 Hz to the cut-off 
frequency at -3dB with no ripple. If the frequency is more than the cut-off frequency, it 
will roll-off towards zero with the rate of -20 dB/decade for the first-order filter.If you 
increase the order of the filter, the rate of a roll-off period is also increased. And for 
second-order, it is -40 dB/decade. The quality factor for the Butterworth filter is 0.707. 
The below figure shows the frequency response of the Butterworth filter for various 
orders of the filter 
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Frequency Response of Butterworth FilterThe generalized form of frequency response for 
nth-order Butterworth low-pass filter is; 

 

 

Where, 
n = order of the filter, 
ω = operating frequency (passband frequency) of circuit 
ωC = Cut-off frequency 
ε = maximum passband gain = Amax 

 
The below equation is used to find the value of ε. 

 
 

 
Where, 
H1 = minimum passband gain 
H0 = maximum passband gain 
First-order Lowpass Butterworth Filter 

 

The lowpass filter is a filter that allows the signal with the frequency is lower than the 
cutoff frequency and attenuates the signals with the frequency is more than cutoff 
frequency. In the first-order filter, the number of reactive components is only one. The 
below figure shows the circuit diagram of the first-order lowpass Butterworth filter. 

 
 



 

The low pass Butterworth filter is an active Low pass filter as it consists of the op-amp. 
This op-amp operates on non-inverting mode. Hence, the gain of the filter will decide by 
the resistor R1 and RF. And the cutoff frequency decides by R and C. 
Now, if you apply the voltage divider rule at point Va and find the voltage across a 
capacitor. It is given as; 

 

 
 
Because of the non-inverting configuration of an op-amp, 

 
 

 
 
 

 
WHERE 
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The below figure shows the frequency response of first-order lowpass Butterworth 
filter. 

 

Second-order Butterworth Filter 

The second-order Butterworth filter consists of two reactive components. The 
circuit diagram of a second-order low pass Butterworth filter is as shown in the 
below figure. 

 

In this type of filter, resistor R and RF are the negative feedback of op-amp. And 
the cutoff frequency of the filter decides by R2, R3, C2, and C3.The second-order 
lowpass Butterworth filter consists of two back-to-back connected RC networks. 
And RL is the load resistance. First-order and second-order Butterworth filters are 
very important. Because we can get higher-order Butterworth filter by just 
cascading of the first-order and second-order Butterworth filters. 



 

Let’s analyse the circuit of second-order Butterworth filter, 
 
 
Apply Kirchhoff’s Current Law at point V1. 

 
 

 
 
 

 



 

 
 

 



 

 
 

Rearrange this equation, 
 
 

 
Compare this equation with the standard form transfer function for second-order 
Butterworth filter. And that is, 

 
 

By comparing above equations, we can find the equation of cutoff frequency and 
overall gain for the second-order lowpass Butterworth filter. 

 
The gain of filter is, 



 

 
 
 

 
 
 
 



 

We can say that, the quality factor is only depends on the gain of filter. And the 
value of gain should not more than 3. If the value of gain is more than 3, the 
system will be unstable. 

 
The value of quality factor is 0.707 for the Butterworth filter. And if we put this 
value in equation of quality factor, we can find the value of gain. 

 
 

 
While designing the second-order Butterworth filter above relation must be satisfy. 

The frequency response of this filter is as shown in below figure. 
 
 

Third-order Lowpass Butterworth Filter 
 
 

Third-order lowpass Butterworth filter can design by cascading the first-order and 
second-order Butterworth filter. 



 

 
 

The below figure shows the circuit diagram of the third-order lowpass Butterworth filter. 
 
 

 
Third-order Low Pass Butterworth Filter 

In this figure, the first part shows the first-order lowpass Butterworth filter, and the 
second part shows the second-order lowpass Butterworth filter. 

 
But in this condition, the voltage gain of the first part is optional and it can be set at any 
value. Therefore, the first op-amp is not taking part in voltage gain. Hence, the figure for 
the third-order low pass filter can be expressed as below figure also; 

 

;  



 

 
 
 
 

 

The voltage gain of a second-order filter affects the flatness of frequency response. 
If the gain of the second-order filter is kept at 1.586, the gain will down 3db for 
each part. So, the overall gain will down 6dB at the cutoff frequency. 

 
By increasing the voltage gain of the second-order filter, we can offset the 
cumulative loss of voltage gain. 

 
In the third-order Butterworth filter, the rate of a roll-off period is -60dB/decade. 
And the frequency response of this filter is nearer to the ideal Butterworth filter 
compared to the first and second-order filters. The frequ 

 
 

 

(frequency response of this filter is as shown in the below figure.) 
 
Fourth-order Lowpass Butterworth Filter 
Fourth-order Butterworth filter is established by the cascade connection of two 
second-order low pass Butterworth filters. The circuit diagram of the fourth-order 
lowpass Butterworth filter is as shown in the below figure. 



 

 

 

If the gain of both filters is set at 1.586, the voltage gain will be down 6 dB at the 
cutoff frequency. We can get a more flat response by choosing different values of 
voltage gain for both stages. According to the advanced research, we get maximum 
flat response, if we use the voltage gain 1.152 for the first stage and 2.235 for the 
second stage. 

 
The below figure shows the frequency response of the fourth-order lowpass 
Butterworth filter. 

 

 
 
 
: 



 

Butterworth Filter Applications 
 

The applications of a Butterworth filter are listed below 

 Because of the maximal flat frequency response in the passband, it is used as 
an anti-aliasing filter in data converter applications. 

 The Butterworth filter is used in the audio processing application. An 
efficient audio noise reduction tool can be developed using a Butterworth 
filter. 

 It is also used in various communication and control systems. 
 It is used in radar to design the display of radar target tracking. 
 It is used for motion analysis. 

 
Attenuator 

Every signal that includes electrical, telecommunication, entertainment signal 
(television), etc. should be transmitted from one place to another place through a 
medium. As the distance of signal travelled increases the strength of signal 
decreases and it will be difficult for a lot of tasks. But, attenuation, phenomenon of 
gradual loss of strength of signal over distance is still useful in many tasks. 
Attenuators are simple passive two-port electronic devices that are used for 
attenuation, to reduce strength of signals without causing disturbance to its 
waveform. 
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Definition of the decibel 

 The bel is a logarithmic unit used to express the ratio between two values, 
and a reference   , of a physical quantity. The decibel is a tenth of a bel. 
A level   is calculated with the following method: 

 

 The quantity under study is, in general, a power. For field quantities 
(speed, pressure, force, voltage...) which need to be squared to obtain the 
power, the level in decibels is given by the following relation: 

  . 

The decibel scale is used in numerous physical domains (electronics, acoustics, 
audio, etc...). As such, this units definition depends on the reference value   and 
can be distinguished by the use of different symbols 

 Electronics: , ... 

 Audio: , ... 

 Acoustics: , , ... 

Hence, there are a lot of different decibels, which are not comparable. The use of 
this type of unit requires a sufficient knowledge of the definition of the considered 
decibel. 

Gain and attenuation in decibels 

The decibel can also be used to explain the gain, or attenuation, of a system. For 
example, the gain in decibels   of an amplifier can be obtained by the ratio of 
output voltage by the input voltage . The calculation of   is done with the 
following formula: 

  . 



 

 Gain/Attenuation When we talk about transmitting signals, we’re very 
interested in the power of the signal that is transmitted (and the power that is 
received). As you know, power is measured in units of Watt (W). To get a 
sense of relative amounts of power, consider the following A typical 
household incandescent light bulb consumes 60WAn exercise bike average 
output is approx. 200W 

 A microwave uses 1100W 

 AM radio stations transmit 10,000-50,000W.Now, consider a typical 
situation where a radio receiver receives signal from a radio station as shown 
in the illustration to the right. Note that: The signal power decreases 

 significantly at the car receiver signal loss (attenuation). The signal power 
received is too 

  signal must be amplifiedlow first (gain). The term gain usually refers to 
amplification. For an amplifier, the gain (A) is the ratio of the output to the 
input. So, to calculate power gain (AP) where Pin is the power input and 
Pout is the power output: 

 
 
 

𝑨𝒑 = 𝑷𝒐𝒖𝒕/𝑷𝒊𝒏 (unitless) 

Reduction or signal loss is termed attenuation. This occurs when we have a gain 
that is less than 1. Although 
gain/attenuation is usually associated with the signal power, it is sometimes used to 
described the gain/attenuation of the 
signal voltages as well. 

Decibels 
For many reasons of history and practicality, engineers usually use a logarithmic 
unit called the decibel (dB) to express gain 
and attenuation figures. To express power gain or attenuation with decibels (dB): 



 

 
 

 
 

If we’re dealing with current or voltage gain such as 𝐴𝑉 = 𝑉𝑜𝑢𝑡/𝑉𝑖𝑛, then the gain 
in decibels is given by 

 

 
 

 
Types of Attenuator 

Attenuators are available as both fixed attenuators and adjustable attenuators. 
Fixed attenuator networks are known as ‘attenuator Pads”. These are available for 
specific values from 0dB to 100dB. Attenuators are commonly found in Radio 
Frequency and Optical applications. Radio Frequency attenuators are used in the 
electronic circuits whereas optical attenuators find applications in fiber optics. 

Few common layouts of attenuator are- T configuration, pI configuration, and L 
configuration. These configurations are of an unbalanced type. The balanced type 
of T configuration and pI configurations are denoted as ‘H’ configuration, O 
configuration respectively. The balanced type is a symmetrical circuit whereas 
unbalanced types are asymmetrical circuits 



 

 
 

The RF-based design of the attenuator is of six types. They are Fixed type, Step 
type, Continuously Variable type, Programmable Type, DC Bias type and DC 
Blocking type. 

Fixed Type 

In Fixed type attenuators the resistor network is locked at a predetermined 
attenuation value. These are laid down in the signal path to attenuate the power of 
the transmitted signal. These can be unidirectional or bidirectional based on their 
application requirement. These can be available as either surface mount, 
waveguide or coaxial types. In a chip-based design, the different types of materials 
deposited on the thermally conductive substrate develop the resistance. This 
resistance value depends on the dimensions of the chip and the materials used for 
chip production. 

 

 
T configuration Pi configuration 

 

Attenuator Applications: 

There are so manyattenuator applications that we can observe in our daily life and 
a few of them are listed below: 

 
 Microwave power can be controlled using PIN diode attenuators, PIN diode 

is used as control element in most of the electronically variable attenuators. 
 To control volume of electronic equipment such as speakers, electric guitars, 

etc. attenuators are used. 



 

 In general, while conducting tests in laboratories only a small voltage or 
current signal is used for which attenuators are widely used to reduce output 
signal strength. 

 To test high power radio frequency signals, before applying it to the test 
equipment you should reduce the strength of the signal for which attenuators 
can be used. 

 While driving match sensitive radio frequency mixers it is really important 
to ensure that proper impedance match is obtained as poor match can lead to 
degraded performance. So, impedance matched radio frequency attenuator 
can be used to improve this matching and improve performance. 

 In some digital or analog circuits, a surge in voltage may cause damage to 
the circuits which can be avoided using attenuators to reduce high voltages. 

 In fibre optic communication, it is important to obtain proper match for 
transmitter and receiver which can be obtained using optical attenuators. 

 Basic signal generators will be able to generate an exact fixed level and to 
use this output signal we must use switch attenuators to reduce its signal 
which is less effective method compared to using a variable level control 
radio frequency attenuator that can be used to generate required levels. 

 Attenuators are used as volume control equipment in broadcasting stations. 
 For testing purposes in laboratories, to obtain smaller voltage signals, 

attenuators are used. 
 Fixed attenuators are used to improve the impedance matching in circuits. 
 These are used to protect the circuits from damages caused by high voltage 

values. 
 RF attenuators are used for the protective dissipation of power in measuring 

RF signals. 
 Optical attenuators are applied in fiber optic communication to properly 

match transmitter and receiver levels. 
 
 
 
 


	Government polytechnic kendrapara
	LECTURE NOTES
	CHAPTER -1
	Figure shows a Y (star or wage) connected resistance circuit. Let
	DELTA TO STAR CONVERSION
	The two systems will be exactly equivalent if the resistance between any pair of terminals A, B and C in figure for the star is the same as that between the corresponding pair for the delta connection when the third terminal is isolated.
	For the Δ network resistance between the terminals AB is Rab = Rab II (Rac + Rbc)
	Simalarly for Y-network resistance between terminal B and C is
	For the Δ network resistance between terminal B and C is Rbc = Rbc II (Rab+Rac)
	Similarly we can find Rac between terminal A and C is
	Subtracting eq.(v) from the sum of eq.(iii) and eq.(iv) yields
	Rb = Rab . Rbc
	Subtracting eq.(iv) from the sum of eq.(iii) & eq.(v) yields 2 Ra = 2 Rab . Rac
	Similarly subtracting eq.(iii) from the sum of eq.(iv) and eq.(v) yields 2 Rc = 2. Rbc . Rca

	STAR TO DELTA CONVERSION
	Similarly we can find conversion formula for Y to Δ as Rab = Ra . Rb + Rb .Rc + Rc . Ra

	Mutual inductance
	Definition of Mutual Inductance
	INTRODUCTION
	POWER RELATION IN AC CIRCUITS
	&
	TRANSIENT RESPONSE OF PASSIVE CIRCUITS
	PROPERTIES OF ALTERNATING CURRENT

	AC SERIES CIRCUIT
	Resonance circuit:-
	An electric circuit which has very low impedance at a certain frequency. Resonant circuits are often built using an inductor, such as a coil, connected in parallel to a capacitor. The response of the circuit to signals of different frequencies is a fu...
	Bandwidth of a Series RLC Resonance Circuit
	Example No1
	Difference Between Series and Parallel Resonance Circuits
	CHAPTER 6
	CHAPTER 7

	Two Port Network Parameters
	+ +
	_
	_ (1)
	CHAPTER 8
	Because of the non-inverting configuration of an op-amp,
	Second-order Butterworth Filter
	The second-order Butterworth filter consists of two reactive components. The circuit diagram of a second-order low pass Butterworth filter is as shown in the below figure.
	Let’s analyse the circuit of second-order Butterworth filter,
	Rearrange this equation,
	By comparing above equations, we can find the equation of cutoff frequency and overall gain for the second-order lowpass Butterworth filter.
	We can say that, the quality factor is only depends on the gain of filter. And the value of gain should not more than 3. If the value of gain is more than 3, the system will be unstable.
	While designing the second-order Butterworth filter above relation must be satisfy. The frequency response of this filter is as shown in below figure.
	;
	By increasing the voltage gain of the second-order filter, we can offset the cumulative loss of voltage gain.

	Fourth-order Lowpass Butterworth Filter
	Fourth-order Butterworth filter is established by the cascade connection of two second-order low pass Butterworth filters. The circuit diagram of the fourth-order lowpass Butterworth filter is as shown in the below figure.
	The below figure shows the frequency response of the fourth-order lowpass Butterworth filter.

	Butterworth Filter Applications
	The applications of a Butterworth filter are listed below
	 The Butterworth filter is used in the audio processing application. An efficient audio noise reduction tool can be developed using a Butterworth filter.
	 It is used in radar to design the display of radar target tracking.

	Attenuator
	Every signal that includes electrical, telecommunication, entertainment signal (television), etc. should be transmitted from one place to another place through a medium. As the distance of signal travelled increases the strength of signal decreases an...

	Definition of the decibel
	 The bel is a logarithmic unit used to express the ratio between two values, and a reference   , of a physical quantity. The decibel is a tenth of a bel. A level   is calculated with the following method:
	The decibel scale is used in numerous physical domains (electronics, acoustics, audio, etc...). As such, this units definition depends on the reference value   and can be distinguished by the use of different symbols
	 Audio: , ...

	Gain and attenuation in decibels
	The decibel can also be used to explain the gain, or attenuation, of a system. For example, the gain in decibels   of an amplifier can be obtained by the ratio of output voltage by the input voltage . The calculation of   is done with the following fo...
	 Gain/Attenuation When we talk about transmitting signals, we’re very interested in the power of the signal that is transmitted (and the power that is received). As you know, power is measured in units of Watt (W). To get a sense of relative amounts ...
	 AM radio stations transmit 10,000-50,000W.Now, consider a typical situation where a radio receiver receives signal from a radio station as shown in the illustration to the right. Note that: The signal power decreases
	  signal must be amplifiedlow first (gain). The term gain usually refers to amplification. For an amplifier, the gain (A) is the ratio of the output to the input. So, to calculate power gain (AP) where Pin is the power input and Pout is the power ou...
	gain/attenuation is usually associated with the signal power, it is sometimes used to described the gain/attenuation of the

	Decibels
	For many reasons of history and practicality, engineers usually use a logarithmic unit called the decibel (dB) to express gain

	Types of Attenuator
	Attenuators are available as both fixed attenuators and adjustable attenuators. Fixed attenuator networks are known as ‘attenuator Pads”. These are available for specific values from 0dB to 100dB. Attenuators are commonly found in Radio Frequency and ...
	The RF-based design of the attenuator is of six types. They are Fixed type, Step type, Continuously Variable type, Programmable Type, DC Bias type and DC Blocking type.
	In Fixed type attenuators the resistor network is locked at a predetermined attenuation value. These are laid down in the signal path to attenuate the power of the transmitted signal. These can be unidirectional or bidirectional based on their applica...



	Attenuator Applications:
	There are so manyattenuator applications that we can observe in our daily life and a few of them are listed below:
	 To control volume of electronic equipment such as speakers, electric guitars, etc. attenuators are used.
	 To test high power radio frequency signals, before applying it to the test equipment you should reduce the strength of the signal for which attenuators can be used.
	 In some digital or analog circuits, a surge in voltage may cause damage to the circuits which can be avoided using attenuators to reduce high voltages.
	 Basic signal generators will be able to generate an exact fixed level and to use this output signal we must use switch attenuators to reduce its signal which is less effective method compared to using a variable level control radio frequency attenua...
	 For testing purposes in laboratories, to obtain smaller voltage signals, attenuators are used.
	 These are used to protect the circuits from damages caused by high voltage values.
	 Optical attenuators are applied in fiber optic communication to properly match transmitter and receiver levels.



